Distinguishing Between Foreground and Background Events in News

Mohammad Aldawsari, Adrian Perez, Deya Banisakher, Mark A. Finlayson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Determining whether an event in a news article is a foreground or background event would be useful in many natural language processing tasks, for example, temporal relation extraction, summarization, or storyline generation. We introduce the task of distinguishing between foreground and background events in news articles as well as identifying the general temporal position of background events relative to the foreground period (past, present, future, and their combinations). We achieve good performance (0.73 F1 for background vs. foreground and temporal position, and 0.79 F1 for background vs. foreground only) on a dataset of news articles by leveraging discourse information in a featurized model.

Original languageEnglish
Title of host publicationCOLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference
EditorsDonia Scott, Nuria Bel, Chengqing Zong
PublisherAssociation for Computational Linguistics (ACL)
Pages5171-5180
Number of pages10
ISBN (Electronic)9781952148279
StatePublished - 2020
Event28th International Conference on Computational Linguistics, COLING 2020 - Virtual, Online, Spain
Duration: 8 Dec 202013 Dec 2020

Publication series

NameCOLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference

Conference

Conference28th International Conference on Computational Linguistics, COLING 2020
Country/TerritorySpain
CityVirtual, Online
Period8/12/2013/12/20

Fingerprint

Dive into the research topics of 'Distinguishing Between Foreground and Background Events in News'. Together they form a unique fingerprint.

Cite this