Abstract
Background: The aim of the present investigation is to prepare baricitinib (BAR)-loaded diphenyl carbonate (DPC) β-cyclodextrin (βCD) based nanosponges (NSs) to improve the oral bioavailability. Methods: BAR-loaded DPC-crosslinked βCD NSs (B-DCNs) were prepared prepared by varying the molar ratio of βCD: DPC (1:1.5 to 1:6). The developed B-DCNs loaded with BAR were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), % yield and percent entrapment efficiency (%EE). Results: Based on the above evaluations, BAR-loaded DPC βCD NSs (B-CDN3) was optimized with mean size (345.8±4.7 nm), PDI (0.335±0.005), Yield (91.46±7.4%) and EE (79.1±1.6%). The optimized NSs (B-CDN3) was further confirmed by SEM, spectral analysis, BET analysis, in vitro release and pharmacokinetic studies. The optimized NSs (B-CDN3) showed 2.13 times enhancement in bioavailability in comparison to pure BAR suspension. Conclusion: It could be anticipated that NSs loaded with BAR as a promising tool for release and bioavailability for the treatment of rheumatic arthritis and Covid-19.
Original language | English |
---|---|
Pages (from-to) | 2239-2251 |
Number of pages | 13 |
Journal | International Journal of Nanomedicine |
Volume | 18 |
DOIs | |
State | Published - 2023 |
Keywords
- BAR
- Baricitinib
- Bioavailability
- Crosslinker
- Cyclodextrin
- Diphenyl carbonate
- DPC