TY - JOUR
T1 - Design, synthesis, molecular dynamics and gene silencing studies of novel therapeutic HIF-1α siRNAs in hypoxic cancer cells
AU - Singh, Jyoti
AU - Yadav, Sneha
AU - Sonkar, Archana Bharti
AU - Kumar, Anurag
AU - Shrivastava, Neeraj Kumar
AU - Kumar, Rohit
AU - Kumar, Dharmendra
AU - Ansari, Mohd Nazam
AU - Saeedan, Abdulaziz S.
AU - Kaithwas, Gaurav
N1 - Publisher Copyright:
© 2024
PY - 2024/12
Y1 - 2024/12
N2 - Hypoxia inducible factors (HIFs) are heterodimeric proteins that belong to a small group of transcription factors, which mainly regulates transcription of genes under hypoxic conditions. Particularly, oxygen sensing subunit of HIF-1α is a predominant subtype that heterodimerizes with oxygen-independent HIF-1β subunit, to trigger the transcription of hypoxia responsive genes. Due to poor supply of blood and rapid division of cancerous cells, tumor microenvironment exhibits low oxygen condition and therefore increased levels of HIF-1α. One of the promising therapeutic strategies to cancer is modulation of HIF-1α signaling pathway. Small interfering RNA (siRNA) mediated downregulation of HIF-1α has been reported to prevent growth and progression of various types of cancer and holds great promise in the cancer treatment. In this study, computational approaches were used to design potential siRNAs targeting HIF-1α and investigate their interaction with the human argonaute-2 (hAgo2). Molecular dynamic simulation of HIF-1α siRNAs-hAgo2 complexes revealed key interactions required for the efficient binding of guide strand to hAgo2 protein. Two siRNAs (S2 and S5) exhibiting strong binding with hAgo2 were further considered. Subsequently, we transfected the MCF-7 cell line with both standard HIF-1α and our designed siRNAs (S2 and S5). Following transfection, translation changes in the MCF-7 cells were assessed through western blotting. S2 and S5 efficiently reduced the expression of HIF-1α in hypoxic conditions. The aim of the present study is to understand the siRNA-hAgo2 interaction. It is also focused on the desiging of effective siRNA against HIF-1α.
AB - Hypoxia inducible factors (HIFs) are heterodimeric proteins that belong to a small group of transcription factors, which mainly regulates transcription of genes under hypoxic conditions. Particularly, oxygen sensing subunit of HIF-1α is a predominant subtype that heterodimerizes with oxygen-independent HIF-1β subunit, to trigger the transcription of hypoxia responsive genes. Due to poor supply of blood and rapid division of cancerous cells, tumor microenvironment exhibits low oxygen condition and therefore increased levels of HIF-1α. One of the promising therapeutic strategies to cancer is modulation of HIF-1α signaling pathway. Small interfering RNA (siRNA) mediated downregulation of HIF-1α has been reported to prevent growth and progression of various types of cancer and holds great promise in the cancer treatment. In this study, computational approaches were used to design potential siRNAs targeting HIF-1α and investigate their interaction with the human argonaute-2 (hAgo2). Molecular dynamic simulation of HIF-1α siRNAs-hAgo2 complexes revealed key interactions required for the efficient binding of guide strand to hAgo2 protein. Two siRNAs (S2 and S5) exhibiting strong binding with hAgo2 were further considered. Subsequently, we transfected the MCF-7 cell line with both standard HIF-1α and our designed siRNAs (S2 and S5). Following transfection, translation changes in the MCF-7 cells were assessed through western blotting. S2 and S5 efficiently reduced the expression of HIF-1α in hypoxic conditions. The aim of the present study is to understand the siRNA-hAgo2 interaction. It is also focused on the desiging of effective siRNA against HIF-1α.
KW - Cancer
KW - HIF-1α
KW - Molecular dynamics
KW - siRNA
UR - http://www.scopus.com/inward/record.url?scp=85208067369&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.136943
DO - 10.1016/j.ijbiomac.2024.136943
M3 - Article
C2 - 39490865
AN - SCOPUS:85208067369
SN - 0141-8130
VL - 282
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 136943
ER -