Design and development of a wearable assistive device integrating a fuzzy decision support system for blind and visually impaired people

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

In this article, a new design of a wearable navigation support system for blind and visually impaired people (BVIP) is proposed. The proposed navigation system relies primarily on sensors, real-time processing boards, a fuzzy logic-based decision support system, and a user interface. It uses sensor data as inputs and provides the desired safety orientation to the BVIP. The user is informed about the decision based on a mixed voice–haptic interface. The navigation aid system contains two wearable obstacle detection systems managed by an embedded controller. The control system adopts the Robot Operating System (ROS) architecture supported by the Beagle Bone Black master board that meets the real-time constraints. The data acquisition and obstacle avoidance are carried out by several nodes managed by the ROS to finally deliver a mixed haptic–voice message for guidance of the BVIP. A fuzzy logic-based decision support system was implemented to help BVIP to choose a safe direction. The system has been applied to blindfolded persons and visually impaired persons. Both types of users found the system promising and pointed out its potential to become a good navigation aid in the future.

Original languageEnglish
Article number1082
JournalMicromachines
Volume12
Issue number9
DOIs
StatePublished - Sep 2021

Keywords

  • Assistive technology
  • Blind and visually impaired people
  • Fuzzy classifier
  • Navigation aid
  • Sensor data fusion
  • Wearable devices

Fingerprint

Dive into the research topics of 'Design and development of a wearable assistive device integrating a fuzzy decision support system for blind and visually impaired people'. Together they form a unique fingerprint.

Cite this