Abstract
In the era of renewable energy integration, precise solar energy modeling in power systems is crucial for optimized generation planning and facilitating sustainable energy transitions. The present research proposes a comprehensive framework for assessing the operational reliability of solar integrated systems, validated using the IEEE RTS 96 test system. A robust uncertainty model has been developed to characterize variations in solar irradiance to address the uncertainties in solar panel output, followed by a multi-state modeling approach to account for the dynamic nature of solar panel output. The research introduces a time series-based ‘non-linear autoregressive neural network’ (NAR-Net) to forecast the solar irradiance levels five days ahead to optimize solar power efficiency. A comparative analysis has been conducted of three other state-of-the-art approaches, such as auto-regressive (AR), auto-regressive with moving average, and multi-layer perceptron, for predicting solar irradiance. Performance metrics, including mean square error, regression, and computational time, were evaluated to demonstrate the efficacy of the NAR-Net. The proposed prediction-based approach enhances the reliability of power generation planning by integrating modeling, which is based on forecasting. It is found that the proposed method achieves an accuracy of 98% w.r.t its counterpart. Moreover, the assessment to optimize the operational reliability of solar-integrated systems and improve generation planning for a sustainable energy future is achieved.
| Original language | English |
|---|---|
| Article number | 9335 |
| Journal | Scientific Reports |
| Volume | 15 |
| Issue number | 1 |
| DOIs | |
| State | Published - Dec 2025 |
UN SDGs
This output contributes to the following UN Sustainable Development Goals (SDGs)
-
SDG 7 Affordable and Clean Energy
-
SDG 17 Partnerships for the Goals
Keywords
- Artificial neural network
- Frequency domain
- Operational reliability
- Solar energy system
- multi-state model
Fingerprint
Dive into the research topics of 'Data driven prediction based reliability assessment of solar energy systems incorporating uncertainties for generation planning'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver