Abstract
Since the emergence of big data, the popularity of deep learning models has increased and they are being implemented in a wide range of applications, including people detection and counting in congested environments. Detecting and counting people for human behavior analysis in retail stores is a challenging research problem due to the congested and crowded environment. This paper proposes a deep learning approach for detecting and counting people in the presence of occlusions and illuminance variation in a crowded retail environment, utilizing deep CNNs (DCNNs) for semantic segmentation of top-view depth visual data. Semantic segmentation has been implemented using (DCNNs) in recent years since it is a powerful approach. The objective of this paper is to design a novel architecture that consists of an encoder–decoder architecture. We were motivated to use transfer learning to solve the problem of insufficient training data. We used ResNet50 for the encoder, and we built the decoder part as a novel contribution. Our model was trained and evaluated on the TVHeads dataset and the people counting dataset (PCDS) that are available for research purposes. It consists of depth data of people captured from a top-view RGB-D sensor. The segmentation results indicate high accuracy and demonstrate that the proposed model is robust and accurate.
Original language | English |
---|---|
Pages (from-to) | 3735-3749 |
Number of pages | 15 |
Journal | Arabian Journal for Science and Engineering |
Volume | 49 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2024 |
Keywords
- CNNs
- Intelligent retail stores
- People counting
- Top-view configuration