TY - JOUR
T1 - Computational investigation of magneto-hydrodynamic flow of newtonian fluid behavior over obstacles placed in rectangular cavity
AU - Hassan, Ali
AU - Hussain, Azad
AU - Fernandez-Gamiz, Unai
AU - Arshad, Mubashar
AU - Karamti, Hanen
AU - Awrejcewicz, Jan
AU - Alharbi, Fahad M.
AU - Elfasakhany, Ashraf
AU - Galal, Ahmed M.
N1 - Publisher Copyright:
© 2022 THE AUTHORS
PY - 2023/2/15
Y1 - 2023/2/15
N2 - The magneto hydro-dynamic flows are of great importance in the industries such as food processing, power generation and in investigating the behavior of boundary layer convection. In this article, the magneto hydrodynamic flow of Newtonian fluid in rectangular cavity under the effect of applied magnetic filed is investigated. In the rectangular cavity, three semi circular cylinders are placed as obstacles to create unsteadiness in the flow path. Computational fluid dynamics model is built to analyze and observe the flow behavior in presence of 10 Ampere per meter. Furthermore, velocity profiles in vertical and horizontal directions, streamlines patterns, pressure distribution profile, vorticity profile, and viscous stress are presented. These profiles are discussed with and without the presence of strong magnetization force and flow behavior is investigated. The model is designed and compute in COMSOL-Multiphysics. It is concluded that presence of high magnetization force enhance the surface velocity to 1.87 m/s in horizontal direction and 0.86 m/s in vertical direction. Swirling flow pattern in streamlines increase with high magnetic force. The exerted pressure on wall of cavity has augmented to 2.39 Pa with increment in magnetic field. Moreover, obtained results are in complete agreement with already published work.
AB - The magneto hydro-dynamic flows are of great importance in the industries such as food processing, power generation and in investigating the behavior of boundary layer convection. In this article, the magneto hydrodynamic flow of Newtonian fluid in rectangular cavity under the effect of applied magnetic filed is investigated. In the rectangular cavity, three semi circular cylinders are placed as obstacles to create unsteadiness in the flow path. Computational fluid dynamics model is built to analyze and observe the flow behavior in presence of 10 Ampere per meter. Furthermore, velocity profiles in vertical and horizontal directions, streamlines patterns, pressure distribution profile, vorticity profile, and viscous stress are presented. These profiles are discussed with and without the presence of strong magnetization force and flow behavior is investigated. The model is designed and compute in COMSOL-Multiphysics. It is concluded that presence of high magnetization force enhance the surface velocity to 1.87 m/s in horizontal direction and 0.86 m/s in vertical direction. Swirling flow pattern in streamlines increase with high magnetic force. The exerted pressure on wall of cavity has augmented to 2.39 Pa with increment in magnetic field. Moreover, obtained results are in complete agreement with already published work.
KW - Cavity
KW - MHD flow
KW - Newtonian and Unsteady flow
KW - Obstacles
UR - http://www.scopus.com/inward/record.url?scp=85139680261&partnerID=8YFLogxK
U2 - 10.1016/j.aej.2022.09.043
DO - 10.1016/j.aej.2022.09.043
M3 - Article
AN - SCOPUS:85139680261
SN - 1110-0168
VL - 65
SP - 163
EP - 188
JO - Alexandria Engineering Journal
JF - Alexandria Engineering Journal
ER -