Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification

Raghad Ayed Alenazi, Ibrahim Hotan Alsohaimi, M. R. El-Aassar, Yasser A. El-Ossaily, Ebtsam K. Alenezy, Seham J.F. Alanazi, Ahmed A. Alshahrani, Ahmed Hamad Alanazi, Abdullah M. Aldawsari, Hassan M.A. Hassan

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Ultrafiltration is vital for wastewater treatment and industrial processes like food production and pharmaceuticals. This comprehensive study investigates the intricate development and performance evaluation of advanced composite membranes composed of sulfonated polyethersulfone (SPES), polyaniline (PANI), and sulfonated polyaniline (SPANI). Spectroscopic analyses (FTIR and XRD) confirm successful PANI and SPANI integration with the SPES matrix. Thermogravimetric assessment shows improved thermal stability in SPES-SPANI 3 % membranes with a higher decomposition temperature than pristine membranes. Morphological analysis via FESEM reveals structural changes in nanocomposite membranes, highlighting PANI and SPANI's impact on microscale morphology. Mechanical testing indicates significant elongation increase and enhanced flexibility in SPES-SPANI 3 % membranes. Physicochemical characterizations demonstrate heightened porosity, water uptake, and surface hydrophilicity with PANI and SPANI incorporation. Permeability tests show a substantial increase in pure water flux, reaching 220 Lm-2h−1 for SPES-SPANI 3 % membranes. Antifouling effectiveness is evident through lower flux values for foulants (HA, BSA, SA, and NOM) compared to pure water. The hybrid membranes exhibited remarkable resistance to fouling, removing more than 98.69 %, 99.23 %, and 99.49 % of BSA, HA, and SA, respectively, without compromising their rejection rates. Long-term durability assessments confirm stable performance, with SPES-SPANI 3 % membranes recovering 98 % of the initial flux after three cycles. This investigation highlights the robust of SPES-SPANI 3 % membranes for water filtration, emphasizing improved thermal stability, morphological enhancements, flexibility, and superior antifouling and rejection capabilities. These findings offer crucial insights for developing advanced membranes in efficient and durable water purification technologies.

Original languageEnglish
Article number128409
JournalSeparation and Purification Technology
Volume353
DOIs
StatePublished - 19 Jan 2025

Keywords

  • Fouling resistance
  • Polyaniline
  • Polyethersulfone
  • Rejection rate
  • UF membrane
  • Water treatment

Fingerprint

Dive into the research topics of 'Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification'. Together they form a unique fingerprint.

Cite this