TY - JOUR
T1 - Combination use of human menstrual blood stem cell- derived exosomes and hyperbaric oxygen therapy, synergistically promote recovery after spinal cord injury in rats
AU - Hjazi, Ahmed
AU - Alghamdi, Abdullah
AU - Aloraini, Ghfren S.
AU - Alshehri, Mohammed A.
AU - Alsuwat, Meshari A.
AU - Albelasi, Abdullah
AU - Mashat, Reham M.
AU - Alissa, Mohammed
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/6
Y1 - 2024/6
N2 - Traumatic spinal cord injury (TSCI) is one of the catastrophic events in the nervous system that leads to the loss of sensory and motor function of the spinal cord at the site of injury. Considering that several factors such as apoptosis, inflammation, and oxidative stress play a role in the spread of damage caused by trauma, therefore, the treatment should also be based on multifactorial approaches. Currently, we investigated the effects of human menstrual blood stem cells (MenSCs)-derived exosomes in combination with hyperbaric oxygen therapy (HBOT) in the recovery of TSCI in rats. Ninety male mature Sprague-Dawley (SD) rats were planned into five equal groups, including; control group, TSCI group, Exo group (underwent TSCI and received MenSCs -derived exosomes), HBOT group (underwent TSCI and received HBOT), and Exo+HBOT group (underwent TSCI and received MenSCs -derived exosomes plus HBOT). After the behavioral evaluation, tissue samples were obtained for stereological, immunohistochemical, biochemical, and molecular assessments. Our results showed that the numerical density of neurons, the concentrations of antioxidative biomarkers (CAT, GSH, and SOD), and neurological function scores were significantly greater in the treatments group than in the TSCI group, and these changes were more obvious in the Exo+HBOT ones (P<0.05). This is while the numerical densities of apoptotic cells and glial cells, the levels of an oxidative factor (MDA) and proinflammatory cytokines (IL-1β and TNF-α) were considerably decreased in the treatment groups, specially the Exo+HBOT group, compared to the TSCI group (P<0.05). We conclude that the co-administration of exosomes derived from MenSCs and HBOT has more neuroprotective effects in animals with TSCI.
AB - Traumatic spinal cord injury (TSCI) is one of the catastrophic events in the nervous system that leads to the loss of sensory and motor function of the spinal cord at the site of injury. Considering that several factors such as apoptosis, inflammation, and oxidative stress play a role in the spread of damage caused by trauma, therefore, the treatment should also be based on multifactorial approaches. Currently, we investigated the effects of human menstrual blood stem cells (MenSCs)-derived exosomes in combination with hyperbaric oxygen therapy (HBOT) in the recovery of TSCI in rats. Ninety male mature Sprague-Dawley (SD) rats were planned into five equal groups, including; control group, TSCI group, Exo group (underwent TSCI and received MenSCs -derived exosomes), HBOT group (underwent TSCI and received HBOT), and Exo+HBOT group (underwent TSCI and received MenSCs -derived exosomes plus HBOT). After the behavioral evaluation, tissue samples were obtained for stereological, immunohistochemical, biochemical, and molecular assessments. Our results showed that the numerical density of neurons, the concentrations of antioxidative biomarkers (CAT, GSH, and SOD), and neurological function scores were significantly greater in the treatments group than in the TSCI group, and these changes were more obvious in the Exo+HBOT ones (P<0.05). This is while the numerical densities of apoptotic cells and glial cells, the levels of an oxidative factor (MDA) and proinflammatory cytokines (IL-1β and TNF-α) were considerably decreased in the treatment groups, specially the Exo+HBOT group, compared to the TSCI group (P<0.05). We conclude that the co-administration of exosomes derived from MenSCs and HBOT has more neuroprotective effects in animals with TSCI.
KW - Exosomes
KW - Hyperbaric oxygen therapy
KW - Menstrual blood
KW - Mesenchymal stem cells
KW - Spinal cord injury
UR - http://www.scopus.com/inward/record.url?scp=85191006293&partnerID=8YFLogxK
U2 - 10.1016/j.tice.2024.102378
DO - 10.1016/j.tice.2024.102378
M3 - Article
C2 - 38663114
AN - SCOPUS:85191006293
SN - 0040-8166
VL - 88
JO - Tissue and Cell
JF - Tissue and Cell
M1 - 102378
ER -