TY - GEN
T1 - Channel length influence on the performance of the vacuum membrane distillation
AU - Alasiri, Abdulaziz M.
AU - Alqsair, Umar
AU - Cosman, Sertac
AU - Krysko, Robert
AU - Oztekin, Alparslan
N1 - Publisher Copyright:
© 2020 ASME
PY - 2020
Y1 - 2020
N2 - The demand for freshwater has been increased globally. Membrane distillation (MD) technique can be an attractive option for desalination applications. MD is defined as a thermal-driven separation process that implements a hydrophobic membrane for allowing only water vapor transport through the membrane. VMD system is investigated in this study to examine its sensitivity toward the channel design. PTFE membrane is employed and treated as a functional surface where its main properties, such as porosity, tortuosity, pore diameter, and membrane thickness are defined. Different flow rates and inlet temperatures of the feed solution are involved to intensely study the effect of the channel length on VMD performance. The local concentration and temperature polarization coefficient and mass flux along the membrane surface are presented and discussed. With the increasing length of the module, concentration and temperature polarization levels are increased, and the vapor flux is decreased. It is shown that the permeate flux decreases linearly with the channel length. The slope of the permeate flux with length can be used to estimate the flux performance of modules with varying length.
AB - The demand for freshwater has been increased globally. Membrane distillation (MD) technique can be an attractive option for desalination applications. MD is defined as a thermal-driven separation process that implements a hydrophobic membrane for allowing only water vapor transport through the membrane. VMD system is investigated in this study to examine its sensitivity toward the channel design. PTFE membrane is employed and treated as a functional surface where its main properties, such as porosity, tortuosity, pore diameter, and membrane thickness are defined. Different flow rates and inlet temperatures of the feed solution are involved to intensely study the effect of the channel length on VMD performance. The local concentration and temperature polarization coefficient and mass flux along the membrane surface are presented and discussed. With the increasing length of the module, concentration and temperature polarization levels are increased, and the vapor flux is decreased. It is shown that the permeate flux decreases linearly with the channel length. The slope of the permeate flux with length can be used to estimate the flux performance of modules with varying length.
UR - http://www.scopus.com/inward/record.url?scp=85092609338&partnerID=8YFLogxK
U2 - 10.1115/HT2020-8949
DO - 10.1115/HT2020-8949
M3 - Conference contribution
AN - SCOPUS:85092609338
T3 - ASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
BT - ASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
Y2 - 13 July 2020 through 15 July 2020
ER -