Channel length influence on the performance of the vacuum membrane distillation

Abdulaziz M. Alasiri, Umar Alqsair, Sertac Cosman, Robert Krysko, Alparslan Oztekin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The demand for freshwater has been increased globally. Membrane distillation (MD) technique can be an attractive option for desalination applications. MD is defined as a thermal-driven separation process that implements a hydrophobic membrane for allowing only water vapor transport through the membrane. VMD system is investigated in this study to examine its sensitivity toward the channel design. PTFE membrane is employed and treated as a functional surface where its main properties, such as porosity, tortuosity, pore diameter, and membrane thickness are defined. Different flow rates and inlet temperatures of the feed solution are involved to intensely study the effect of the channel length on VMD performance. The local concentration and temperature polarization coefficient and mass flux along the membrane surface are presented and discussed. With the increasing length of the module, concentration and temperature polarization levels are increased, and the vapor flux is decreased. It is shown that the permeate flux decreases linearly with the channel length. The slope of the permeate flux with length can be used to estimate the flux performance of modules with varying length.

Original languageEnglish
Title of host publicationASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791883709
DOIs
StatePublished - 2020
EventASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels - Virtual, Online
Duration: 13 Jul 202015 Jul 2020

Publication series

NameASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels

Conference

ConferenceASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
CityVirtual, Online
Period13/07/2015/07/20

Fingerprint

Dive into the research topics of 'Channel length influence on the performance of the vacuum membrane distillation'. Together they form a unique fingerprint.

Cite this