Black TiO2 nanotube arrays: Bifunctional electrocatalytic performance for alkaline water splitting

Nawal Al Abass, Talal F. Qahtan, Amani M. Alansi, A. Bubshait, Yara Abdullah Alwadei, Noof Al Basiry, Zahra Albu, Fatehia S. Alhakami, Tawfik A. Saleh

Research output: Contribution to journalArticlepeer-review

Abstract

Black TiO2, with its defect-rich structure, outperforms conventional white TiO2 in hydrogen and oxygen evolution reactions due to its superior light absorption and charge separation. This study focuses on the fabrication of black TiO2 nanotube arrays (BTNTs) via electrochemical anodization, with the aim of evaluating their dual functionality as photoelectrodes for water splitting in alkaline conditions. This investigation addresses a significant gap in the literature regarding the performance of BTNTs in photoelectrochemical water splitting under alkaline conditions and visible light. Among the samples, BTNTs prepared with a 2-h anodization time (BTNTs-2h) displayed outstanding photoelectrochemical properties, achieving the highest performance metrics. Notably, the BTNTs-2h sample featured a high concentration of oxygen vacancies (OVs), which significantly enhanced electrical conductivity and accelerated charge transfer processes. The optimized BTNTs-2h electrode exhibited remarkably high photocurrent density of 2.6 mA cm−2 at 1.23 V vs RHE for oxygen evolution and −50 mV for hydrogen evolution at a current density of −10 mA cm−2. Furthermore, the BTNTs-2h exhibited minimal resistance in both reactions. Most impressively, when employed as both the cathode and anode in a two-electrode water electrolysis system, the BTNTs-2h achieved full water splitting at an exceptionally low cell voltage of 1.46 V at 10 mA cm−2. These results underscore the potential of BTNTs, especially BTNTs-2h, as cost-effective and efficient materials for sustainable water splitting applications, paving the way for advancements in renewable energy conversion and storage systems essential for the future energy landscape.

Original languageEnglish
Article number134300
JournalFuel
Volume388
DOIs
StatePublished - 15 May 2025

Keywords

  • Bifunctional photoelectrodes
  • Black TiO
  • Electrochemical anodization
  • Oxygen vacancies
  • Ti defects
  • Water splitting

Fingerprint

Dive into the research topics of 'Black TiO2 nanotube arrays: Bifunctional electrocatalytic performance for alkaline water splitting'. Together they form a unique fingerprint.

Cite this