TY - JOUR
T1 - Bioinspired Graphene Oxide-Magnetite Nanocomposite Coatings as Protective Superhydrophobic Antifouling Surfaces
AU - Selim, Mohamed S.
AU - Fatthallah, Nesreen A.
AU - Shenashen, Mohamed A.
AU - Higazy, Shimaa A.
AU - Madian, Hekmat R.
AU - Selim, Mahmoud M.
AU - El-Safty, Sherif A.
N1 - Publisher Copyright:
© 2023 American Chemical Society. All rights reserved.
PY - 2023/2/14
Y1 - 2023/2/14
N2 - Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-Fe3O4nanospheres). Various GO-Fe3O4hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship. A simple coprecipitation procedure was used to fabricate magnetite nanospheres with an average diameter of 30-50 nm, a single crystal structure, and a predominant (311) lattice plane. The uniform bioinspired superhydrophobic PDMS/GO-Fe3O4nanocomposite surface produced had a micro-/nano-roughness, low surface-free energy (SFE), and high fouling release (FR) efficiency. It exhibited several advantages including simplicity, ease of large-area fabrication, and a simultaneous offering of dual micro-/nano-scale structures simply via a one-step solution casting process for a wide variety of materials. The superhydrophobicity, SFE, and rough topology have been studied as surface properties of the unfilled silicone and the bioinspired PDMS/GO-Fe3O4nanocomposites. The coatings' physical, mechanical, and anticorrosive features were also taken into account. Several microorganisms were employed to examine the fouling resistance of the coated specimens for 1 month. Good dispersion of GO-Fe3O4hybrid fillers in the PDMS coating until 1 wt % achieved the highest water contact angle (158° ± 2°), the lowest SFE (12.06 mN/m), micro-/nano-roughness, and improved bulk mechanical and anticorrosion properties. The well-distributed PDMS/GO-Fe3O4(1 wt % nanofillers) bioinspired nanocoating showed the least biodegradability against all the tested microorganisms [Kocuria rhizophila (2.047%), Pseudomonas aeruginosa (1.961%), and Candida albicans (1.924%)]. We successfully developed non-toxic, low-cost, and economical nanostructured superhydrophobic FR composite coatings for long-term ship hull coatings. This study may expand the applications of bio-inspired functional materials because for multiple AF, durability and hydrophobicity are both important features in several industrial applications.
AB - Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-Fe3O4nanospheres). Various GO-Fe3O4hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship. A simple coprecipitation procedure was used to fabricate magnetite nanospheres with an average diameter of 30-50 nm, a single crystal structure, and a predominant (311) lattice plane. The uniform bioinspired superhydrophobic PDMS/GO-Fe3O4nanocomposite surface produced had a micro-/nano-roughness, low surface-free energy (SFE), and high fouling release (FR) efficiency. It exhibited several advantages including simplicity, ease of large-area fabrication, and a simultaneous offering of dual micro-/nano-scale structures simply via a one-step solution casting process for a wide variety of materials. The superhydrophobicity, SFE, and rough topology have been studied as surface properties of the unfilled silicone and the bioinspired PDMS/GO-Fe3O4nanocomposites. The coatings' physical, mechanical, and anticorrosive features were also taken into account. Several microorganisms were employed to examine the fouling resistance of the coated specimens for 1 month. Good dispersion of GO-Fe3O4hybrid fillers in the PDMS coating until 1 wt % achieved the highest water contact angle (158° ± 2°), the lowest SFE (12.06 mN/m), micro-/nano-roughness, and improved bulk mechanical and anticorrosion properties. The well-distributed PDMS/GO-Fe3O4(1 wt % nanofillers) bioinspired nanocoating showed the least biodegradability against all the tested microorganisms [Kocuria rhizophila (2.047%), Pseudomonas aeruginosa (1.961%), and Candida albicans (1.924%)]. We successfully developed non-toxic, low-cost, and economical nanostructured superhydrophobic FR composite coatings for long-term ship hull coatings. This study may expand the applications of bio-inspired functional materials because for multiple AF, durability and hydrophobicity are both important features in several industrial applications.
UR - http://www.scopus.com/inward/record.url?scp=85147217836&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.2c03061
DO - 10.1021/acs.langmuir.2c03061
M3 - Article
C2 - 36719844
AN - SCOPUS:85147217836
SN - 0743-7463
VL - 39
SP - 2333
EP - 2346
JO - Langmuir
JF - Langmuir
IS - 6
ER -