TY - JOUR
T1 - Autonomous haulage systems in the mining industry
T2 - Cybersecurity, communication and safety issues and challenges
AU - Gaber, Tarek
AU - Jazouli, Yassine El
AU - Eldesouky, Esraa
AU - Ali, Ahmed
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6/1
Y1 - 2021/6/1
N2 - The current advancement of robotics, especially in Cyber-Physical Systems (CPS), leads to a prominent combination between the mining industry and connected-embedded technologies. This progress has arisen in the form of state-of-the-art automated giant vehicles with Autonomous Haulage Systems (AHS) that can transport ore without human intervention. Like CPS, AHS enable autonomous and/or remote control of physical systems (e.g., mining trucks). Thus, similar to CPS, AHS are also susceptible to cyber attacks such as Wi-Fi De-Auth and GPS attacks. With the use of the AHS, several mining activities have been strengthened due to increasing the efficiency of operations. Such activities require ensuring accurate data collection from which precise information about the state of the mine should be generated in a timely and consistent manner. Consequently, the presence of secure and reliable communications is crucial in making AHS mines safer, productive, and sustainable. This paper aims to identify and discuss the relation between safety of AHS in the mining environment and both cybersecurity and communication as well as highlighting their challenges and open issues. We survey the literature that addressed this aim and discuss its pros and cons and then highlight some open issues. We conclude that addressing cybersecurity issues of AHS can ensure the safety of operations in the mining environment as well as providing reliable communication, which will lead to better safety. Additionally, it was found that new communication technologies, such 5G and LTE, could be adopted in AHS-based systems for mining, but further research is needed to considered related cybersecurity issues and attacks.
AB - The current advancement of robotics, especially in Cyber-Physical Systems (CPS), leads to a prominent combination between the mining industry and connected-embedded technologies. This progress has arisen in the form of state-of-the-art automated giant vehicles with Autonomous Haulage Systems (AHS) that can transport ore without human intervention. Like CPS, AHS enable autonomous and/or remote control of physical systems (e.g., mining trucks). Thus, similar to CPS, AHS are also susceptible to cyber attacks such as Wi-Fi De-Auth and GPS attacks. With the use of the AHS, several mining activities have been strengthened due to increasing the efficiency of operations. Such activities require ensuring accurate data collection from which precise information about the state of the mine should be generated in a timely and consistent manner. Consequently, the presence of secure and reliable communications is crucial in making AHS mines safer, productive, and sustainable. This paper aims to identify and discuss the relation between safety of AHS in the mining environment and both cybersecurity and communication as well as highlighting their challenges and open issues. We survey the literature that addressed this aim and discuss its pros and cons and then highlight some open issues. We conclude that addressing cybersecurity issues of AHS can ensure the safety of operations in the mining environment as well as providing reliable communication, which will lead to better safety. Additionally, it was found that new communication technologies, such 5G and LTE, could be adopted in AHS-based systems for mining, but further research is needed to considered related cybersecurity issues and attacks.
KW - Autonomous haulage systems
KW - Communication
KW - Cyber-physical systems
KW - Cybersecurity
KW - Mining industry
KW - Operating technology
KW - Safety
UR - http://www.scopus.com/inward/record.url?scp=85107316168&partnerID=8YFLogxK
U2 - 10.3390/electronics10111357
DO - 10.3390/electronics10111357
M3 - Article
AN - SCOPUS:85107316168
SN - 2079-9292
VL - 10
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 11
M1 - 1357
ER -