TY - JOUR
T1 - Assessment of machine learning techniques in IoT-based architecture for the monitoring and prediction of COVID-19
AU - Aljumah, Abdullah
N1 - Publisher Copyright:
© 2021 by the author. Licensee MDPI, Basel, Switzerland.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - From the end of 2019, the world has been facing the threat of COVID-19. It is predicted that, before herd immunity is achieved globally via vaccination, people around the world will have to tackle the COVID-19 pandemic using precautionary steps. This paper suggests a COVID-19 identification and control system that operates in real-time. The proposed system utilizes the Internet of Things (IoT) platform to capture users’ time-sensitive symptom information to detect potential cases of coronaviruses early on, to track the clinical measures adopted by survivors, and to gather and examine appropriate data to verify the existence of the virus. There are five key components in the framework: symptom data collection and uploading (via communication technology), a quarantine/isolation center, an information processing core (using artificial intelligent techniques), cloud computing, and visualization to healthcare doctors. This research utilizes eight machine/deep learning techniques—Neural Network, Decision Table, Support Vector Machine (SVM), Naive Bayes, OneR, K-Nearest Neighbor (K-NN), Dense Neural Network (DNN), and the Long Short-Term Memory technique—to detect coronavirus cases from time-sensitive information. A simulation was performed to verify the eight algorithms, after selecting the relevant symptoms, on real-world COVID-19 data values. The results showed that five of these eight algorithms obtained an accuracy of over 90%. Conclusively, it is shown that real-world symptomatic information would enable these three algorithms to identify potential COVID-19 cases effectively with enhanced accuracy. Additionally, the framework presents responses to treatment for COVID-19 patients.
AB - From the end of 2019, the world has been facing the threat of COVID-19. It is predicted that, before herd immunity is achieved globally via vaccination, people around the world will have to tackle the COVID-19 pandemic using precautionary steps. This paper suggests a COVID-19 identification and control system that operates in real-time. The proposed system utilizes the Internet of Things (IoT) platform to capture users’ time-sensitive symptom information to detect potential cases of coronaviruses early on, to track the clinical measures adopted by survivors, and to gather and examine appropriate data to verify the existence of the virus. There are five key components in the framework: symptom data collection and uploading (via communication technology), a quarantine/isolation center, an information processing core (using artificial intelligent techniques), cloud computing, and visualization to healthcare doctors. This research utilizes eight machine/deep learning techniques—Neural Network, Decision Table, Support Vector Machine (SVM), Naive Bayes, OneR, K-Nearest Neighbor (K-NN), Dense Neural Network (DNN), and the Long Short-Term Memory technique—to detect coronavirus cases from time-sensitive information. A simulation was performed to verify the eight algorithms, after selecting the relevant symptoms, on real-world COVID-19 data values. The results showed that five of these eight algorithms obtained an accuracy of over 90%. Conclusively, it is shown that real-world symptomatic information would enable these three algorithms to identify potential COVID-19 cases effectively with enhanced accuracy. Additionally, the framework presents responses to treatment for COVID-19 patients.
KW - COVID-19
KW - Fog computing
KW - Internet of Things (IoT)
KW - Temporal Recurrent Neural Network (TRNN)
UR - http://www.scopus.com/inward/record.url?scp=85111386140&partnerID=8YFLogxK
U2 - 10.3390/electronics10151834
DO - 10.3390/electronics10151834
M3 - Article
AN - SCOPUS:85111386140
SN - 2079-9292
VL - 10
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 15
M1 - 1834
ER -