TY - JOUR
T1 - Assessment and Comparison of Phenomenological and Physical Constitutive Models for Predicting the Hot Deformation Behavior of Metallic Materials
T2 - A Pathway for Sustainable Metal Forming in Al-Kharj Governorate
AU - Abd El-Aty, Ali
AU - Shokry, Abdallah
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/5
Y1 - 2025/5
N2 - In the context of Al-Kharj city, which is steadily advancing as an industrial and manufacturing hub within Saudi Arabia, this study has significant relevance. The city’s focus on metal forming, fabrication, and materials engineering makes it crucial to optimize processes such as hot deformation of metallic alloys for various sectors, including aerospace, automotive, oil and gas, and structural applications. By assessing and comparing phenomenological and physical material models for nickel, aluminum, titanium, and iron-based alloys, this study aids Al-Kharj industries in advancing their process simulation and predictive performance. Thus, this study aims to evaluate the proposed phenomenological and physically based constitutive models for Ni-, Al-, Ti-, and Fe-based alloys to enhance the accuracy of high-temperature deformation simulations. Phenomenological models investigated include the Johnson–Cook (JC), Fields and Backofen (FB), and Khan–Huang–Liang (KHL) formulations, while the Zerilli–Armstrong (ZA) model represents the physical category. Additionally, various modifications to these models are explored. Model parameters are calibrated using the Levenberg–Marquardt algorithm to minimize mean square error. Performance is assessed through key statistical metrics, including the correlation coefficient (R), average absolute relative error (AARE), and root mean square error (RMSE). Of the 32 models analyzed, a modified version of the JC model delivers the highest accuracy across all alloys. Furthermore, four other modifications, one each for the JC and ZA models and two for the FB model, exhibit superior predictive capability for specific alloys. This makes this study valuable not just academically, but also as a practical resource to boost Al-Kharj’s industrial competitiveness and innovation capacity.
AB - In the context of Al-Kharj city, which is steadily advancing as an industrial and manufacturing hub within Saudi Arabia, this study has significant relevance. The city’s focus on metal forming, fabrication, and materials engineering makes it crucial to optimize processes such as hot deformation of metallic alloys for various sectors, including aerospace, automotive, oil and gas, and structural applications. By assessing and comparing phenomenological and physical material models for nickel, aluminum, titanium, and iron-based alloys, this study aids Al-Kharj industries in advancing their process simulation and predictive performance. Thus, this study aims to evaluate the proposed phenomenological and physically based constitutive models for Ni-, Al-, Ti-, and Fe-based alloys to enhance the accuracy of high-temperature deformation simulations. Phenomenological models investigated include the Johnson–Cook (JC), Fields and Backofen (FB), and Khan–Huang–Liang (KHL) formulations, while the Zerilli–Armstrong (ZA) model represents the physical category. Additionally, various modifications to these models are explored. Model parameters are calibrated using the Levenberg–Marquardt algorithm to minimize mean square error. Performance is assessed through key statistical metrics, including the correlation coefficient (R), average absolute relative error (AARE), and root mean square error (RMSE). Of the 32 models analyzed, a modified version of the JC model delivers the highest accuracy across all alloys. Furthermore, four other modifications, one each for the JC and ZA models and two for the FB model, exhibit superior predictive capability for specific alloys. This makes this study valuable not just academically, but also as a practical resource to boost Al-Kharj’s industrial competitiveness and innovation capacity.
KW - Al-Kharj
KW - Fields and Backofen
KW - Johnson–Cook
KW - Khan–Huang–Liang
KW - Zerilli–Armstrong
KW - constitutive modeling
KW - hot deformation
UR - http://www.scopus.com/inward/record.url?scp=105004790670&partnerID=8YFLogxK
U2 - 10.3390/ma18092061
DO - 10.3390/ma18092061
M3 - Article
AN - SCOPUS:105004790670
SN - 1996-1944
VL - 18
JO - Materials
JF - Materials
IS - 9
M1 - 2061
ER -