TY - JOUR
T1 - Application of artificial intelligence and red-tailed hawk optimization for boosting biohydrogen production from microalgae
AU - Rezk, Hegazy
AU - Alahmer, Ali
AU - Olabi, Abdul Ghani
AU - Sayed, Enas Taha
N1 - Publisher Copyright:
© 2024
PY - 2024/11
Y1 - 2024/11
N2 - Enhancing biohydrogen production from microalgae is crucial in addressing environmental and energy challenges. It provides a sustainable, clean energy source while reducing greenhouse gas emissions. Moreover, it advances microalgae-based biotechnology, enabling innovative biofuel production and ecological revitalization. The main target of this study is to develop a robust ANFIS model to simulate the biohydrogen production process from microalgae within photobioreactors. The study focuses on enhancing hydrogen yield by optimizing three critical process parameters: sulfur concentration (%), run time (hours), and wet biomass concentration (g/L). Initially, an adaptive neuro-fuzzy inference system (ANFIS) model for biohydrogen production process is constructed based on empirical data. Subsequently, the red-tailed hawk algorithm (RTH) is used to determine the optimal values for the process parameters, corresponding to maximum hydrogen yield. The performance of ANFIS model in predicting hydrogen yield is assessed using root mean square error (RMSE) and coefficient-of-determination (R2) values. The obtained RMSE values for training and testing data are 2.8477 × 10−05 and 1.2807, respectively, while the corresponding R2 values are 1.0 and 0.9911 for training and testing. The introduction of fuzzy logic into the model significantly improves its predictive accuracy, as evidenced by the drop in RMSE from 10.79 with ANOVA to 0.7159 with ANFIS, representing a substantial 93.4 % decrease. The remarkable precision of the ANFIS model, indicated by its low RMSE and high R2 values, underscores the success of the modeling stage. The combination between ANFIS with the RTH technique yields impressive results, leading to a hydrogen yield enhancement of 6.87 % and 26.65 % when compared to both measured data and ANOVA.
AB - Enhancing biohydrogen production from microalgae is crucial in addressing environmental and energy challenges. It provides a sustainable, clean energy source while reducing greenhouse gas emissions. Moreover, it advances microalgae-based biotechnology, enabling innovative biofuel production and ecological revitalization. The main target of this study is to develop a robust ANFIS model to simulate the biohydrogen production process from microalgae within photobioreactors. The study focuses on enhancing hydrogen yield by optimizing three critical process parameters: sulfur concentration (%), run time (hours), and wet biomass concentration (g/L). Initially, an adaptive neuro-fuzzy inference system (ANFIS) model for biohydrogen production process is constructed based on empirical data. Subsequently, the red-tailed hawk algorithm (RTH) is used to determine the optimal values for the process parameters, corresponding to maximum hydrogen yield. The performance of ANFIS model in predicting hydrogen yield is assessed using root mean square error (RMSE) and coefficient-of-determination (R2) values. The obtained RMSE values for training and testing data are 2.8477 × 10−05 and 1.2807, respectively, while the corresponding R2 values are 1.0 and 0.9911 for training and testing. The introduction of fuzzy logic into the model significantly improves its predictive accuracy, as evidenced by the drop in RMSE from 10.79 with ANOVA to 0.7159 with ANFIS, representing a substantial 93.4 % decrease. The remarkable precision of the ANFIS model, indicated by its low RMSE and high R2 values, underscores the success of the modeling stage. The combination between ANFIS with the RTH technique yields impressive results, leading to a hydrogen yield enhancement of 6.87 % and 26.65 % when compared to both measured data and ANOVA.
KW - ANFIS modeling
KW - Biohydrogen
KW - Microalgae
KW - Optimization
UR - http://www.scopus.com/inward/record.url?scp=85205496474&partnerID=8YFLogxK
U2 - 10.1016/j.ijft.2024.100876
DO - 10.1016/j.ijft.2024.100876
M3 - Article
AN - SCOPUS:85205496474
SN - 2666-2027
VL - 24
JO - International Journal of Thermofluids
JF - International Journal of Thermofluids
M1 - 100876
ER -