Analytical Insight into Some Fractional Nonlinear Dynamical Systems Involving the Caputo Fractional Derivative Operator

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

This work explores modern mathematical avenues as part of fractional calculus research. We apply fractional dispersion relations to the fractional wave equation to numerically examine various formulations of the generalized fractional wave equation. The research explores Drinfeld–Sokolov–Wilson and shallow water equations as fundamental differential equations forming the basis of wave theory studies. This work presents effective methods to obtain the numerical solution of the fractional-order FDSW and FSW coupled system equations. The analysis employs Caputo fractional derivatives during studies of fractional orders. This study develops the new iterative transform technique (NITM) and homotopy perturbation transform method (HPTM) using Elzaki transform (ET) with a new iteration method and a homotopy perturbation method. The proposed techniques generate approximation solutions that adopt an infinite fractional series with fractional order solutions converging towards analytic integer solutions. The proposed method demonstrates its precision through tabular simulations of computed approximations and their absolute error values while representing results with 2D and 3D graphics. The paper presents the physical analysis of solution dynamics across diverse (Formula presented.) ranges during a suitable time frame. The developed computational techniques yield numerical and graphical output, which are compared to analytic results to verify the solution convergence. The computational algorithms have proven their high accuracy, flexibility, effectiveness, and simplicity in evaluating fractional-order mathematical models.

Original languageEnglish
Article number320
JournalFractal and Fractional
Volume9
Issue number5
DOIs
StatePublished - May 2025

Keywords

  • Caputo derivative
  • Elzaki transform
  • fractional Drinfeld–Sokolov–Wilson (DSW) equation
  • fractional shallow water (SW) equation
  • homotopy perturbation method
  • new iterative method

Fingerprint

Dive into the research topics of 'Analytical Insight into Some Fractional Nonlinear Dynamical Systems Involving the Caputo Fractional Derivative Operator'. Together they form a unique fingerprint.

Cite this