TY - JOUR
T1 - Analgesic and anticancer activity of benzoxazole clubbed 2-pyrrolidinones as novel inhibitors of monoacylglycerol lipase
AU - Afzal, Obaid
AU - Altamimi, Abdulmalik Saleh Alfawaz
AU - Shahroz, Mir Mohammad
AU - Sharma, Hemant Kumar
AU - Riadi, Yassine
AU - Hassan, Md Quamrul
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021
Y1 - 2021
N2 - Ten benzoxazole clubbed 2-pyrrolidinones (11–20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11–20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2 NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.
AB - Ten benzoxazole clubbed 2-pyrrolidinones (11–20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11–20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2 NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.
KW - Analgesic
KW - Anticancer
KW - Benzoxazole
KW - MAGL inhibitors
KW - Molecular docking
KW - Pyrrolidin-2-one
UR - http://www.scopus.com/inward/record.url?scp=85105061408&partnerID=8YFLogxK
U2 - 10.3390/molecules26082389
DO - 10.3390/molecules26082389
M3 - Article
C2 - 33924091
AN - SCOPUS:85105061408
SN - 1420-3049
VL - 26
JO - Molecules
JF - Molecules
IS - 8
M1 - 2389
ER -