TY - JOUR
T1 - Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine
T2 - An in-vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro-tensile bond strength assessment
AU - Niazi, Fayez Hussain
AU - Luddin, Norhayati
AU - Alghawazi, Abdulaziz Marzouq
AU - Al Sebai, Leen
AU - Alqerban, Ali
AU - Alqahtani, Yahya M.
AU - Barakat, Ali
AU - Samran, Abdulaziz
AU - Noushad, Mohammed
N1 - Publisher Copyright:
© 2024 Wiley Periodicals LLC.
PY - 2024/8
Y1 - 2024/8
N2 - To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide-ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy-dispersive x-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three-step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one-way ANOVA and Tukey post hoc (p =.05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch-and-rinse adhesive exhibited enhanced antibacterial activity and micro-tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. Research Highlights: 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive.
AB - To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide-ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy-dispersive x-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three-step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one-way ANOVA and Tukey post hoc (p =.05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch-and-rinse adhesive exhibited enhanced antibacterial activity and micro-tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. Research Highlights: 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive.
KW - S.Mutans
KW - aluminum zirconate
KW - degree of conversion
KW - etch and rinse adhesive
KW - tensile bond strength
UR - http://www.scopus.com/inward/record.url?scp=85189976954&partnerID=8YFLogxK
U2 - 10.1002/jemt.24569
DO - 10.1002/jemt.24569
M3 - Article
C2 - 38581370
AN - SCOPUS:85189976954
SN - 1059-910X
VL - 87
SP - 1955
EP - 1964
JO - Microscopy Research and Technique
JF - Microscopy Research and Technique
IS - 8
ER -