TY - JOUR
T1 - Accelerating biomedical image segmentation using equilibrium optimization with a deep learning approach
AU - Al-Shahari, Eman A.
AU - Obayya, Marwa
AU - Alotaibi, Faiz Abdullah
AU - Alsafari, Safa
AU - Salama, Ahmed S.
AU - Assiri, Mohammed
N1 - Publisher Copyright:
© 2024 the Author(s).
PY - 2024
Y1 - 2024
N2 - Biomedical image segmentation is a vital task in the analysis of medical imaging, including the detection and delineation of pathological regions or anatomical structures within medical images. It has played a pivotal role in a variety of medical applications, involving diagnoses, monitoring of diseases, and treatment planning. Conventionally, clinicians or expert radiologists have manually conducted biomedical image segmentation, which is prone to human error, subjective, and time-consuming. With the advancement in computer vision and deep learning (DL) algorithms, automated and semi-automated segmentation techniques have attracted much research interest. DL approaches, particularly convolutional neural networks (CNN), have revolutionized biomedical image segmentation. With this motivation, we developed a novel equilibrium optimization algorithm with a deep learning-based biomedical image segmentation (EOADL-BIS) technique. The purpose of the EOADL-BIS technique is to integrate EOA with the Faster RCNN model for an accurate and efficient biomedical image segmentation process. To accomplish this, the EOADL-BIS technique involves Faster R-CNN architecture with ResNeXt as a backbone network for image segmentation. The region proposal network (RPN) proficiently creates a collection of a set of region proposals, which are then fed into the ResNeXt for classification and precise localization. During the training process of the Faster RCNN algorithm, the EOA was utilized to optimize the hyperparameter of the ResNeXt model which increased the segmentation results and reduced the loss function. The experimental outcome of the EOADL-BIS algorithm was tested on distinct benchmark medical image databases. The experimental results stated the greater efficiency of the EOADL-BIS algorithm compared to other DL-based segmentation approaches.
AB - Biomedical image segmentation is a vital task in the analysis of medical imaging, including the detection and delineation of pathological regions or anatomical structures within medical images. It has played a pivotal role in a variety of medical applications, involving diagnoses, monitoring of diseases, and treatment planning. Conventionally, clinicians or expert radiologists have manually conducted biomedical image segmentation, which is prone to human error, subjective, and time-consuming. With the advancement in computer vision and deep learning (DL) algorithms, automated and semi-automated segmentation techniques have attracted much research interest. DL approaches, particularly convolutional neural networks (CNN), have revolutionized biomedical image segmentation. With this motivation, we developed a novel equilibrium optimization algorithm with a deep learning-based biomedical image segmentation (EOADL-BIS) technique. The purpose of the EOADL-BIS technique is to integrate EOA with the Faster RCNN model for an accurate and efficient biomedical image segmentation process. To accomplish this, the EOADL-BIS technique involves Faster R-CNN architecture with ResNeXt as a backbone network for image segmentation. The region proposal network (RPN) proficiently creates a collection of a set of region proposals, which are then fed into the ResNeXt for classification and precise localization. During the training process of the Faster RCNN algorithm, the EOA was utilized to optimize the hyperparameter of the ResNeXt model which increased the segmentation results and reduced the loss function. The experimental outcome of the EOADL-BIS algorithm was tested on distinct benchmark medical image databases. The experimental results stated the greater efficiency of the EOADL-BIS algorithm compared to other DL-based segmentation approaches.
KW - biomedical image segmentation
KW - computer vision
KW - deep learning
KW - equilibrium optimizer
KW - image processing
UR - http://www.scopus.com/inward/record.url?scp=85183902386&partnerID=8YFLogxK
U2 - 10.3934/math.2024288
DO - 10.3934/math.2024288
M3 - Article
AN - SCOPUS:85183902386
SN - 2473-6988
VL - 9
SP - 5905
EP - 5924
JO - AIMS Mathematics
JF - AIMS Mathematics
IS - 3
ER -