TY - JOUR
T1 - A System Dynamics Approach to Feedback Processes in Project Scheduling
AU - Odedairo, Babatunde Omoniyi
AU - Alarjani, Ali
N1 - Publisher Copyright:
© by the author.
PY - 2024
Y1 - 2024
N2 - Projects, as catalysts for proactive transformation, offer a temporary and adaptable framework that effectively handles complexities (or uncertainties) within a competitive corporate landscape. Hence, the use of an effective project management framework, such as Dynamic Project Scheduling (DPS), is a method to handle intricacies in order to accomplish organizational objectives. DPS refers to a triangle interaction involving baseline scheduling, schedule risk analysis, and project control while supporting schedule adjustment in response to changes and uncertainties. However, there is a lack of information regarding studies that have investigated the feedback mechanisms among DPS components. This study was designed to examine the counterintuitive relationships between these components using system dynamics. The quantities within the DPS system were identified and defined. A causal loop diagram was used to illustrate the interactions among these quantities. Subsequently, a Stock and Flow Diagram (SFD) was created to identify the inputs, states, and flow mechanisms within the DPS. Using the SFD, a system dynamics expression was generated which was then employed to compute the rate of change of the Budgeted Cost of Work Remaining (BCWR) for two projects at different time intervals. The results properly indicated the period of idleness during project execution. The use of BCWR rather than schedule variance provides a more effective visual representation for evaluating performance and tracking progress. The BCWR and planned value exhibit contrasting trends, highlighting the importance of earned value quantities in project control. The use of system dynamics in project management can enhance the planning and scheduling phase, allow project managers to monitor pertinent performance measures, and optimize project outcomes through informed decisions.
AB - Projects, as catalysts for proactive transformation, offer a temporary and adaptable framework that effectively handles complexities (or uncertainties) within a competitive corporate landscape. Hence, the use of an effective project management framework, such as Dynamic Project Scheduling (DPS), is a method to handle intricacies in order to accomplish organizational objectives. DPS refers to a triangle interaction involving baseline scheduling, schedule risk analysis, and project control while supporting schedule adjustment in response to changes and uncertainties. However, there is a lack of information regarding studies that have investigated the feedback mechanisms among DPS components. This study was designed to examine the counterintuitive relationships between these components using system dynamics. The quantities within the DPS system were identified and defined. A causal loop diagram was used to illustrate the interactions among these quantities. Subsequently, a Stock and Flow Diagram (SFD) was created to identify the inputs, states, and flow mechanisms within the DPS. Using the SFD, a system dynamics expression was generated which was then employed to compute the rate of change of the Budgeted Cost of Work Remaining (BCWR) for two projects at different time intervals. The results properly indicated the period of idleness during project execution. The use of BCWR rather than schedule variance provides a more effective visual representation for evaluating performance and tracking progress. The BCWR and planned value exhibit contrasting trends, highlighting the importance of earned value quantities in project control. The use of system dynamics in project management can enhance the planning and scheduling phase, allow project managers to monitor pertinent performance measures, and optimize project outcomes through informed decisions.
KW - budgeted cost of work remaining
KW - dynamic project scheduling
KW - project performance measures
KW - project scheduling
KW - system dynamics
UR - http://www.scopus.com/inward/record.url?scp=85191755526&partnerID=8YFLogxK
U2 - 10.48084/etasr.6666
DO - 10.48084/etasr.6666
M3 - Article
AN - SCOPUS:85191755526
SN - 2241-4487
VL - 14
SP - 13201
EP - 13207
JO - Engineering, Technology and Applied Science Research
JF - Engineering, Technology and Applied Science Research
IS - 2
ER -