A semi-supervised deep rule-based classifier for robust finger knuckle-print verification

Mounir Benmalek, Abdelouahab Attia, Abderraouf Bouziane, M. Hassaballah

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Today, biometric recognition systems play an important role in various applications of different domains. Despite remarkable progress, their performance remains insufficient for security applications. Recently, semi-supervised deep rule classifier (SSDRB) is clearly explainable and universal classification tool used to solve different problems of classification or prediction. Thus, in this paper, we propose an effective scheme based SSDRB classifier for personal authentication systems, where, finger knuckle print (FKP) has been exploited. The proposed scheme is data driven and completely automatic. In this scheme, the pertinent and relevant features are extracted from the input finger knuckle image by binarized statistical image features descriptor (BSIF), which are then fed into fuzzy rules based multilayer semi-supervised learning approach based on a deep rule-based (DRB) classifier to decide whether the person is genuine or impostor. The experiments were conducted on the publicly available PolyU-FKP database provided by University of Hong Kong. The results are represented in form of rank-1, equal error rate (EER), cumulative match curve (CMC) and receiver operating characteristic (ROC) curves. The obtained results demonstrate that the proposed SSDRB classifier is a promising tool for the FKP biometric identification systems. Experimental results on the PolyU-FKP database show that the proposed SSDRB achieves lower error rates with an EER of 0.00% and a rank-1 of 99.90% on the FKP single modality outperforming several published methods.

Original languageEnglish
Pages (from-to)837-848
Number of pages12
JournalEvolving Systems
Volume13
Issue number6
DOIs
StatePublished - Dec 2022
Externally publishedYes

Keywords

  • Biometric systems
  • BSIF descriptor
  • Finger knuckle
  • Semi-supervised deep rule-based classifiers

Fingerprint

Dive into the research topics of 'A semi-supervised deep rule-based classifier for robust finger knuckle-print verification'. Together they form a unique fingerprint.

Cite this