A robust deep learning approach for position-independent smartphone-based human activity recognition

Bandar Almaslukh, Abdel Monim Artoli, Jalal Al-Muhtadi

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

Recently, modern smartphones equipped with a variety of embedded-sensors, such as accelerometers and gyroscopes, have been used as an alternative platform for human activity recognition (HAR), since they are cost-effective, unobtrusive and they facilitate real-time applications. However, the majority of the related works have proposed a position-dependent HAR, i.e., the target subject has to fix the smartphone in a pre-defined position. Few studies have tackled the problem of position-independent HAR. They have tackled the problem either using handcrafted features that are less influenced by the position of the smartphone or by building a position-aware HAR. The performance of these studies still needs more improvement to produce a reliable smartphone-based HAR. Thus, in this paper, we propose a deep convolution neural network model that provides a robust position-independent HAR system. We build and evaluate the performance of the proposed model using the RealWorld HAR public dataset. We find that our deep learning proposed model increases the overall performance compared to the state-of-the-art traditional machine learning method from 84% to 88% for position-independent HAR. In addition, the position detection performance of our model improves superiorly from 89% to 98%. Finally, the recognition time of the proposed model is evaluated in order to validate the applicability of the model for real-time applications.

Original languageEnglish
Article number3726
JournalSensors
Volume18
Issue number11
DOIs
StatePublished - Nov 2018
Externally publishedYes

Keywords

  • Convolution neural networks
  • Deep learning
  • Human activity recognition
  • Position detection
  • Position-independent
  • Smartphone

Fingerprint

Dive into the research topics of 'A robust deep learning approach for position-independent smartphone-based human activity recognition'. Together they form a unique fingerprint.

Cite this