Abstract
The unprecedented catalytic role of Iron (III) nitrate nonahydrate (Fe (NO3)3•9H2O) has been explored in a top-down technique for the synthesis and Iron (III) doping of Titanium dioxide nanoparticles (TiO2-NPs). In the experimental procedure, the chosen 1:1 ratio of Fe (NO3)3•9H2O and TiO2 bulk powder is allowed to work hydrothermally in top-down synthesis and Fe-doping of (TiO2) nanoparticles. Field emission scanning electron microscopy (FESEM) shows the particle structure or morphology of the Fe-doped TiO2-NPs. Raman and x-ray photoelectron spectroscopy (XPS) is used to study the composition and iron-content at the surface of the synthesized nanoparticles. X-ray diffraction (XRD) pattern has several peaks for α-Fe2O3 corresponds to Iron doping in the synthesized nanoparticles of (TiO2). The current technique provides a practical method for maximum yield and high quality of Fe-doped TiO2 nanoparticles for its potential photovoltaic and photocatalytic applications in modern technologies.
Original language | English |
---|---|
Article number | 045006 |
Journal | Materials Research Express |
Volume | 8 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2021 |
Keywords
- catalysts
- iron-doping
- nanoparticles
- synthesis