TY - JOUR
T1 - A Novel Improved Manta Ray Foraging Optimization Approach for Mitigating Power System Congestion in Transmission Network
AU - Paul, Kaushik
AU - Sinha, Pampa
AU - Bouteraa, Yassine
AU - Skruch, Pawe
AU - Mobayen, Saleh
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2023
Y1 - 2023
N2 - This research manuscript proposes an Improved Manta Ray Foraging Optimization (IMRFO) algorithm for the power system congestion cost problem. The goal of the proposed Congestion Management (CM) strategy is twofold: firstly, the Generator Sensitivity Factors (GSF) is determined to select and involve the most influential power system generators that will reschedule their real power to alleviate the excess power flow in congested transmission lines. Secondly, the IMRFO has been developed and applied to attain the minimum possible congestion cost. The IMRFO has been formulated with the inclusion of correction factors in the exploration and exploitation phases to improve the coordination between these phases. The effectiveness of IMRFO has been measured considering its effective performance on the 23 conventional benchmark functions. 39 bus New England and IEEE-118 bus test system has been utilized to authenticate the effectiveness of the CM approach with the application of IMRFO. The outcomes highlight that the congestion cost achieved with IMRFO has been reduced by, of 16.08%, 13.73%, 11.78%, and 4.48 % for the 39-bus system and 14.84%, 12.97%, 9.63%, and 6.85% for 118 bus system when compared to the Bacteria Forge Optimization (BFO), Grey Wolf Optimization (GWO), Sine-Cosine Algorithm (SCA), and Original MRFO. The results gained with the implementation of IMRFO on the CM problem portrays appreciable minimization in the congestion cost, enhancement in the system voltage and losses, generates better convergence profile and computational time when contrasted with the recent optimization methods.
AB - This research manuscript proposes an Improved Manta Ray Foraging Optimization (IMRFO) algorithm for the power system congestion cost problem. The goal of the proposed Congestion Management (CM) strategy is twofold: firstly, the Generator Sensitivity Factors (GSF) is determined to select and involve the most influential power system generators that will reschedule their real power to alleviate the excess power flow in congested transmission lines. Secondly, the IMRFO has been developed and applied to attain the minimum possible congestion cost. The IMRFO has been formulated with the inclusion of correction factors in the exploration and exploitation phases to improve the coordination between these phases. The effectiveness of IMRFO has been measured considering its effective performance on the 23 conventional benchmark functions. 39 bus New England and IEEE-118 bus test system has been utilized to authenticate the effectiveness of the CM approach with the application of IMRFO. The outcomes highlight that the congestion cost achieved with IMRFO has been reduced by, of 16.08%, 13.73%, 11.78%, and 4.48 % for the 39-bus system and 14.84%, 12.97%, 9.63%, and 6.85% for 118 bus system when compared to the Bacteria Forge Optimization (BFO), Grey Wolf Optimization (GWO), Sine-Cosine Algorithm (SCA), and Original MRFO. The results gained with the implementation of IMRFO on the CM problem portrays appreciable minimization in the congestion cost, enhancement in the system voltage and losses, generates better convergence profile and computational time when contrasted with the recent optimization methods.
KW - Manta ray forge optimization
KW - meta-heuristic technique
KW - optimal power flow
KW - optimization
KW - power rescheduling
KW - sensitivity analysis
UR - http://www.scopus.com/inward/record.url?scp=85148328344&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2023.3240678
DO - 10.1109/ACCESS.2023.3240678
M3 - Article
AN - SCOPUS:85148328344
SN - 2169-3536
VL - 11
SP - 10288
EP - 10307
JO - IEEE Access
JF - IEEE Access
ER -