A Novel Human Interaction Framework Using Quadratic Discriminant Analysis with HMM

Tanvir Fatima Naik Bukht, Naif Al Mudawi, Saud S. Alotaibi, Abdulwahab Alazeb, Mohammed Alonazi, Aisha Ahmed Al Arfaj, Ahmad Jalal, Jaekwang Kim

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Human-human interaction recognition is crucial in computer vision fields like surveillance, human-computer interaction, and social robotics. It enhances systems’ ability to interpret and respond to human behavior precisely. This research focuses on recognizing human interaction behaviors using a static image, which is challenging due to the complexity of diverse actions. The overall purpose of this study is to develop a robust and accurate system for human interaction recognition. This research presents a novel image-based human interaction recognition method using a Hidden Markov Model (HMM). The technique employs hue, saturation, and intensity (HSI) color transformation to enhance colors in video frames, making them more vibrant and visually appealing, especially in low-contrast or washed-out scenes. Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method. Feature extraction uses the features from Accelerated Segment Test (FAST), Oriented FAST, and Rotated BRIEF (ORB) techniques. The application of Quadratic Discriminant Analysis (QDA) for feature fusion and discrimination enables high-dimensional data to be effectively analyzed, thus further enhancing the classification process. It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities. The impressive accuracy rates of 93% and 94.6% achieved in the BIT-Interaction and UT-Interaction datasets respectively, highlight the success and reliability of the proposed technique. The proposed approach addresses challenges in various domains by focusing on frame improvement, silhouette and feature extraction, feature fusion, and HMM classification. This enhances data quality, accuracy, adaptability, reliability, and reduction of errors.

Original languageEnglish
Pages (from-to)1557-1573
Number of pages17
JournalComputers, Materials and Continua
Volume77
Issue number2
DOIs
StatePublished - 2023

Keywords

  • dimensionality reduction
  • HMM classification
  • Human interaction recognition
  • quadratic discriminant analysis

Fingerprint

Dive into the research topics of 'A Novel Human Interaction Framework Using Quadratic Discriminant Analysis with HMM'. Together they form a unique fingerprint.

Cite this