TY - JOUR
T1 - A Novel Approach for Dental X-Ray Enhancement and Caries Detection
AU - Khan Khan, Sajid
AU - Alanazi, Sultan
AU - Ali Almarshad, Fahdah
AU - Akram, Tallha
N1 - Publisher Copyright:
© 2025 Wiley Periodicals LLC.
PY - 2025/5
Y1 - 2025/5
N2 - Typical manual processes are time-consuming, error-prone, and subjective, especially for complex radiological diagnoses. Although current artificial intelligence models show promising results for identifying caries, they generally fail due to a lack of well-pre-processed images. This research work is two-fold. Initially, we propose a novel layer division non-zero elimination model to reduce Poisson noise and de-blur the acquired images. In the second step, we propose a more accurate and intuitive method in segmenting and classifying caries of the teeth. We used a total of 17 840 radiographs, which are a mix of bitewing and periapical X-rays, for classification with ResNet-50 and segmentation with ResUNet. ResNet-50 uses skip connections within the residual blocks to solve the gradient issue existing in cavity presence. ResUNet combines the encoder-decoder structure of U-Net with the residual block features of ResNet to improve the performance of segmentation on radiographs with cavities. Finally, the Stochastic Gradient Descent optimizer was employed during the training phase to ensure the possibility of convergence and improve accuracy. ResNet-50 was proven to outperform earlier versions, like ResNet-18 and ResNet-34, in achieving a recognition accuracy of 87% in the classification challenge, which is a very reliable indicator of promising results. Similarly, ResUNet was proved to be better than existing state-of-the-art models such as CariesNet, DeepLab v3, and U-Net++ in terms of accuracy, even achieving the level of 98% accuracy in segmentation.
AB - Typical manual processes are time-consuming, error-prone, and subjective, especially for complex radiological diagnoses. Although current artificial intelligence models show promising results for identifying caries, they generally fail due to a lack of well-pre-processed images. This research work is two-fold. Initially, we propose a novel layer division non-zero elimination model to reduce Poisson noise and de-blur the acquired images. In the second step, we propose a more accurate and intuitive method in segmenting and classifying caries of the teeth. We used a total of 17 840 radiographs, which are a mix of bitewing and periapical X-rays, for classification with ResNet-50 and segmentation with ResUNet. ResNet-50 uses skip connections within the residual blocks to solve the gradient issue existing in cavity presence. ResUNet combines the encoder-decoder structure of U-Net with the residual block features of ResNet to improve the performance of segmentation on radiographs with cavities. Finally, the Stochastic Gradient Descent optimizer was employed during the training phase to ensure the possibility of convergence and improve accuracy. ResNet-50 was proven to outperform earlier versions, like ResNet-18 and ResNet-34, in achieving a recognition accuracy of 87% in the classification challenge, which is a very reliable indicator of promising results. Similarly, ResUNet was proved to be better than existing state-of-the-art models such as CariesNet, DeepLab v3, and U-Net++ in terms of accuracy, even achieving the level of 98% accuracy in segmentation.
KW - CNNs model
KW - dental caries classification and segmentation
KW - noise-free caries
KW - Poisson noise reduction
UR - http://www.scopus.com/inward/record.url?scp=105004662568&partnerID=8YFLogxK
U2 - 10.1002/ima.70108
DO - 10.1002/ima.70108
M3 - Article
AN - SCOPUS:105004662568
SN - 0899-9457
VL - 35
JO - International Journal of Imaging Systems and Technology
JF - International Journal of Imaging Systems and Technology
IS - 3
M1 - e70108
ER -