A Novel Anomaly Detection System on the Internet of Railways Using Extended Neural Networks

Umar Islam, Rami Qays Malik, Amnah S. Al-Johani, Muhammad Riaz Khan, Yousef Ibrahim Daradkeh, Ijaz Ahmad, Khalid A. Alissa, Zulkiflee Abdul-Samad, Elsayed M. Tag-Eldin

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The Internet of Railways (IoR) network is made up of a variety of sensors, actuators, network layers, and communication systems that work together to build a railway system. The IoR’s success depends on effective communication. A network of railways uses a variety of protocols to share and transmit information amongst each other. Because of the widespread usage of wireless technology on trains, the entire system is susceptible to hacks. These hacks could lead to harmful behavior on the Internet of Railways if they spread sensitive data to an infected network or a fake user. For the previous few years, spotting IoR attacks has been incredibly challenging. To detect malicious intrusions, models based on machine learning and deep learning must still contend with the problem of selecting features. k-means clustering has been used for feature scoring and ranking because of this. To categorize attacks in two datasets, the Internet of Railways and the University of New South Wales, we employed a new neural network model, the extended neural network (ENN). Accuracy and precision were among the model’s strengths. According to our proposed ENN model, the feature-scoring technique performed well. The most accurate models in dataset 1 (UNSW-NB15) were based on deep neural networks (DNNs) (92.2%), long short-term memory LSTM (90.9%), and ENN (99.7%). To categorize attacks, the second dataset (IOR dataset) yielded the highest accuracy (99.3%) for ENN, followed by CNN (87%), LSTM (89%), and DNN (82.3%).

Original languageEnglish
Article number2813
JournalElectronics (Switzerland)
Volume11
Issue number18
DOIs
StatePublished - Sep 2022

Keywords

  • Internet of Railways
  • extended neural network

Fingerprint

Dive into the research topics of 'A Novel Anomaly Detection System on the Internet of Railways Using Extended Neural Networks'. Together they form a unique fingerprint.

Cite this