TY - JOUR
T1 - A discrete analogue of odd Weibull-G family of distributions
T2 - properties, classical and Bayesian estimation with applications to count data
AU - El-Morshedy, M.
AU - Eliwa, M. S.
AU - Tyagi, Abhishek
N1 - Publisher Copyright:
© 2021 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2022
Y1 - 2022
N2 - In the statistical literature, several discrete distributions have been developed so far. However, in this progressive technological era, the data generated from different fields is getting complicated day by day, making it difficult to analyze this real data through the various discrete distributions available in the existing literature. In this context, we have proposed a new flexible family of discrete models named discrete odd Weibull-G (DOW-G) family. Its several impressive distributional characteristics are derived. A key feature of the proposed family is its failure rate function that can take a variety of shapes for distinct values of the unknown parameters, like decreasing, increasing, constant, J-, and bathtub-shaped. Furthermore, the presented family not only adequately captures the skewed and symmetric data sets, but it can also provide a better fit to equi-, over-, under-dispersed data. After producing the general class, two particular distributions of the DOW-G family are extensively studied. The parameters estimation of the proposed family, are explored by the method of maximum likelihood and Bayesian approach. A compact Monte Carlo simulation study is performed to assess the behavior of the estimation methods. Finally, we have explained the usefulness of the proposed family by using two different real data sets.
AB - In the statistical literature, several discrete distributions have been developed so far. However, in this progressive technological era, the data generated from different fields is getting complicated day by day, making it difficult to analyze this real data through the various discrete distributions available in the existing literature. In this context, we have proposed a new flexible family of discrete models named discrete odd Weibull-G (DOW-G) family. Its several impressive distributional characteristics are derived. A key feature of the proposed family is its failure rate function that can take a variety of shapes for distinct values of the unknown parameters, like decreasing, increasing, constant, J-, and bathtub-shaped. Furthermore, the presented family not only adequately captures the skewed and symmetric data sets, but it can also provide a better fit to equi-, over-, under-dispersed data. After producing the general class, two particular distributions of the DOW-G family are extensively studied. The parameters estimation of the proposed family, are explored by the method of maximum likelihood and Bayesian approach. A compact Monte Carlo simulation study is performed to assess the behavior of the estimation methods. Finally, we have explained the usefulness of the proposed family by using two different real data sets.
KW - Bayesian method
KW - Discrete distributions
KW - dispersion index
KW - L-moment statistics
KW - maximum likelihood method
KW - odd Weibull-G family
KW - simulation
UR - http://www.scopus.com/inward/record.url?scp=85106330643&partnerID=8YFLogxK
U2 - 10.1080/02664763.2021.1928018
DO - 10.1080/02664763.2021.1928018
M3 - Article
AN - SCOPUS:85106330643
SN - 0266-4763
VL - 49
SP - 2928
EP - 2952
JO - Journal of Applied Statistics
JF - Journal of Applied Statistics
IS - 11
ER -