TY - JOUR
T1 - Wind Power Prediction Based on Machine Learning and Deep Learning Models
AU - Tarek, Zahraa
AU - Shams, Mahmoud Y.
AU - Elshewey, Ahmed M.
AU - El-Kenawy, El Sayed M.
AU - Ibrahim, Abdelhameed
AU - Abdelhamid, Abdelaziz A.
AU - El-Dosuky, Mohamed A.
N1 - Publisher Copyright:
© 2023 Tech Science Press. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Wind power is one of the sustainable ways to generate renewable energy. In recent years, some countries have set renewables to meet future energy needs, with the primary goal of reducing emissions and promoting sustainable growth, primarily the use of wind and solar power. To achieve the prediction of wind power generation, several deep and machine learning models are constructed in this article as base models. These regression models are Deep neural network (DNN), k-nearest neighbor (KNN) regressor, long short-term memory (LSTM), averaging model, random forest (RF) regressor, bagging regressor, and gradient boosting (GB) regressor. In addition, data cleaning and data preprocessing were performed to the data. The dataset used in this study includes 4 features and 50530 instances. To accurately predict the wind power values, we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization (SFS-PSO) to optimize the parameters of LSTM network. Five evaluation criteria were utilized to estimate the efficiency of the regression models, namely, mean absolute error (MAE), Nash Sutcliffe Efficiency (NSE), mean square error (MSE), coefficient of determination (R2), root mean squared error (RMSE). The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R2 equals 99.99% in predicting the wind power values.
AB - Wind power is one of the sustainable ways to generate renewable energy. In recent years, some countries have set renewables to meet future energy needs, with the primary goal of reducing emissions and promoting sustainable growth, primarily the use of wind and solar power. To achieve the prediction of wind power generation, several deep and machine learning models are constructed in this article as base models. These regression models are Deep neural network (DNN), k-nearest neighbor (KNN) regressor, long short-term memory (LSTM), averaging model, random forest (RF) regressor, bagging regressor, and gradient boosting (GB) regressor. In addition, data cleaning and data preprocessing were performed to the data. The dataset used in this study includes 4 features and 50530 instances. To accurately predict the wind power values, we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization (SFS-PSO) to optimize the parameters of LSTM network. Five evaluation criteria were utilized to estimate the efficiency of the regression models, namely, mean absolute error (MAE), Nash Sutcliffe Efficiency (NSE), mean square error (MSE), coefficient of determination (R2), root mean squared error (RMSE). The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R2 equals 99.99% in predicting the wind power values.
KW - data preprocessing
KW - performance evaluation
KW - Prediction of wind power
UR - http://www.scopus.com/inward/record.url?scp=85139036177&partnerID=8YFLogxK
U2 - 10.32604/cmc.2023.032533
DO - 10.32604/cmc.2023.032533
M3 - Article
AN - SCOPUS:85139036177
SN - 1546-2218
VL - 74
SP - 715
EP - 732
JO - Computers, Materials and Continua
JF - Computers, Materials and Continua
IS - 1
ER -