Robust Control and Stabilization of Autonomous Vehicular Systems under Deception Attacks and Switching Signed Networks

  • Muflih Alhazmi
  • , Waqar Ul Hassan
  • , Saba Shaheen
  • , Mohammed M.A. Almazah
  • , Azmat Ullah Khan Niazi
  • , Nafisa A. Albasheir
  • , Ameni Gargouri
  • , Naveed Iqbal

Research output: Contribution to journalArticlepeer-review

Abstract

This paper proposes a model-based control framework for vehicle platooning systems with second-order nonlinear dynamics operating over switching signed networks, time-varying delays, and deception attacks. The study includes two configurations: a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus (FNTBC) and Fixed-Time Bipartite Consensus (FXTBC), and a leader—follower structure ensuring structural balance and robustness against deceptive signals. In the leaderless model, a bipartite controller based on impulsive control theory, gauge transformation, and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays. The FNTBC achieves finite-time convergence depending on initial conditions, while the FXTBC guarantees fixed-time convergence independent of them, providing adaptability to different operating states. In the leader—follower case, a discontinuous impulsive control law synchronizes all followers with the leader despite deceptive attacks and switching topologies, maintaining robust coordination through nonlinear corrective mechanisms. To validate the approach, simulations are conducted on systems of five and seventeen vehicles in both leaderless and leader—follower configurations. The results demonstrate that the proposed framework achieves rapid consensus, strong robustness, and high resistance to deception attacks, offering a secure and scalable model-based control solution for modern vehicular communication networks.

Original languageEnglish
Pages (from-to)1903-1940
Number of pages38
JournalCMES - Computer Modeling in Engineering and Sciences
Volume145
Issue number2
DOIs
StatePublished - 2025

Keywords

  • Autonomous vehicles
  • Lyapunov stability
  • deception and cybe-security attacks
  • decision and control systems
  • gauge transformation
  • leader–follower coordination
  • secure vehicular networks
  • stabilization
  • switching signed networks
  • vehicle platooning

Fingerprint

Dive into the research topics of 'Robust Control and Stabilization of Autonomous Vehicular Systems under Deception Attacks and Switching Signed Networks'. Together they form a unique fingerprint.

Cite this