Robust Artificial NN-based Tracking Control Implementation of Grid-Connected AC-DC Rectifier for DC Microgrids Performance Enhancement

Ahmed S. Soliman, Mahmoud M. Amin, Fayez F.M. El-Sousy, Osama A. Mohammad

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

This paper introduces the control and operation of a grid-connected converter with an energy storage system. A complete mathematical model was presented for the developed converter and its control system. The system under study was a small microgrid comprising an AC grid that is feeding a DC load through a converter. The converter was connected to the AC grid through an R-L filter. The classical linear controllers have limitations due to their slow transient performance and low robustness against parameter variations and load disturbances. In this paper, machine-learned controllers were used to dealing with those drawbacks of the traditional controller. First, a study for conventional nested loop Proportional Integral (PI) was introduced for both outer and inner loops PI-PI controller. A Data-Driven Online Learning (DDOL) controller was then proposed. This controller was a Proportional Integral Neural Network (PI-NN) that enhanced the system performance in terms of dynamic and steady-state responses. A comparison between the normal traditional PI-PI controller and the proposed DDOL ones was made under different operating scenarios. The converter control was tested under various operational conditions, and its dynamic and steady-state behavior was analyzed. The model was done through a MATLAB Simulink to check the normal operation of the network in a grid-connected mode under different load disturbances and AC input voltage. Then, the system was designed, fabricated, and implemented in a hardware environment in our testbed, and the test results were verified. The results show that the intelligent controller would achieve better performance in both dynamic and steady-state responses.

Original languageEnglish
Title of host publicationIECON 2022 - 48th Annual Conference of the IEEE Industrial Electronics Society
PublisherIEEE Computer Society
ISBN (Electronic)9781665480253
DOIs
StatePublished - 2022
Event48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022 - Brussels, Belgium
Duration: 17 Oct 202220 Oct 2022

Publication series

NameIECON Proceedings (Industrial Electronics Conference)
Volume2022-October
ISSN (Print)2162-4704
ISSN (Electronic)2577-1647

Conference

Conference48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022
Country/TerritoryBelgium
CityBrussels
Period17/10/2220/10/22

Keywords

  • Intelligent Controllers
  • Machine Learning
  • Microgrids
  • Neural Networks
  • Power Converters

Fingerprint

Dive into the research topics of 'Robust Artificial NN-based Tracking Control Implementation of Grid-Connected AC-DC Rectifier for DC Microgrids Performance Enhancement'. Together they form a unique fingerprint.

Cite this