TY - JOUR
T1 - Q-MobiGraphNet
T2 - Quantum-Inspired Multimodal IoT and UAV Data Fusion for Coastal Vulnerability and Solar Farm Resilience
AU - Aldossary, Mohammad
N1 - Publisher Copyright:
© 2025 by the author.
PY - 2025/9
Y1 - 2025/9
N2 - Coastal regions are among the areas most affected by climate change, facing rising sea levels, frequent flooding, and accelerated erosion that place renewable energy infrastructures under serious threat. Solar farms, which are often built along shorelines to maximize sunlight, are particularly vulnerable to salt-induced corrosion, storm surges, and wind damage. These challenges call for monitoring solutions that are not only accurate but also scalable and privacy-preserving. To address this need, Q-MobiGraphNet, a quantum-inspired multimodal classification framework, is proposed for federated coastal vulnerability analysis and solar infrastructure assessment. The framework integrates IoT sensor telemetry, UAV imagery, and geospatial metadata through a Multimodal Feature Harmonization Suite (MFHS), which reduces heterogeneity and ensures consistency across diverse data sources. A quantum sinusoidal encoding layer enriches feature representations, while lightweight MobileNet-based convolution and graph convolutional reasoning capture both local patterns and structural dependencies. For interpretability, the Q-SHAPE module extends Shapley value analysis with quantum-weighted sampling, and a Hybrid Jellyfish–Sailfish Optimization (HJFSO) strategy enables efficient hyperparameter tuning in federated environments. Extensive experiments on datasets from Norwegian coastal solar farms show that Q-MobiGraphNet achieves 98.6% accuracy, and 97.2% F1-score, and 90.8% Prediction Agreement Consistency (PAC), outperforming state-of-the-art multimodal fusion models. With only 16.2 M parameters and an inference time of 46 ms, the framework is lightweight enough for real-time deployment. By combining accuracy, interpretability, and fairness across distributed clients, Q-MobiGraphNet offers actionable insights to enhance the resilience of coastal renewable energy systems.
AB - Coastal regions are among the areas most affected by climate change, facing rising sea levels, frequent flooding, and accelerated erosion that place renewable energy infrastructures under serious threat. Solar farms, which are often built along shorelines to maximize sunlight, are particularly vulnerable to salt-induced corrosion, storm surges, and wind damage. These challenges call for monitoring solutions that are not only accurate but also scalable and privacy-preserving. To address this need, Q-MobiGraphNet, a quantum-inspired multimodal classification framework, is proposed for federated coastal vulnerability analysis and solar infrastructure assessment. The framework integrates IoT sensor telemetry, UAV imagery, and geospatial metadata through a Multimodal Feature Harmonization Suite (MFHS), which reduces heterogeneity and ensures consistency across diverse data sources. A quantum sinusoidal encoding layer enriches feature representations, while lightweight MobileNet-based convolution and graph convolutional reasoning capture both local patterns and structural dependencies. For interpretability, the Q-SHAPE module extends Shapley value analysis with quantum-weighted sampling, and a Hybrid Jellyfish–Sailfish Optimization (HJFSO) strategy enables efficient hyperparameter tuning in federated environments. Extensive experiments on datasets from Norwegian coastal solar farms show that Q-MobiGraphNet achieves 98.6% accuracy, and 97.2% F1-score, and 90.8% Prediction Agreement Consistency (PAC), outperforming state-of-the-art multimodal fusion models. With only 16.2 M parameters and an inference time of 46 ms, the framework is lightweight enough for real-time deployment. By combining accuracy, interpretability, and fairness across distributed clients, Q-MobiGraphNet offers actionable insights to enhance the resilience of coastal renewable energy systems.
KW - coastal vulnerability assessment
KW - federated learning
KW - multimodal data fusion
KW - quantum-inspired models
KW - solar infrastructure monitoring
UR - https://www.scopus.com/pages/publications/105017059897
U2 - 10.3390/math13183051
DO - 10.3390/math13183051
M3 - Article
AN - SCOPUS:105017059897
SN - 2227-7390
VL - 13
JO - Mathematics
JF - Mathematics
IS - 18
M1 - 3051
ER -