Abstract
Renewable energy penetrated distribution systems (REPDS) are the upcoming form of conventional distribution systems due to environmental benefits and power quality concerns. However, islanding detection is a challenging problem associated with these REPDSs. In this paper, the Particle filter (PF) is utilized to detect the islanding events in modern REPDS by utilizing a voltage signal at the point of common coupling (PCC). Initially, the PF is implemented on voltage signature at PCC for state estimation of fundamental and non-fundamental components. Then, the Particle filter estimated residuals (PFER) and non-fundamental 3rd harmonic component (NFTHC) indices are computed. The estimated PFER & NFTHC indices are matched with the pre-specified threshold setting to recognize the islanding conditions. Then, the tripping decision is taken by OR-operation of both the estimated PFER & NFTHC. The suggested method is competent in detecting islanding events in both balanced as well as unbalanced load/generation events. Moreover, the suggested method is also capable of discriminating islanding conditions from non-islanding events. Extensive simulation on MATLAB/Simulink-based IEEE 13-bus test bed and UL-1741 test bed are accomplished to authenticate the usefulness of the suggested scheme. The results illustrate that the suggested method performs well with 99% accuracy, low computational latency, and very low non-detection zone (NDZ). Furthermore, the time of action of the presented scheme is less than 2 milliseconds (m sec) deprived of any false operation.
| Original language | English |
|---|---|
| Pages (from-to) | 147501-147515 |
| Number of pages | 15 |
| Journal | IEEE Access |
| Volume | 12 |
| DOIs | |
| State | Published - 2024 |
Keywords
- Islanding detection
- particle filters
- passive methods
- renewable energy penetrated distribution systems