TY - JOUR
T1 - Optimization of heterogeneous Catalyst-assisted fatty acid methyl esters biodiesel production from Soybean oil with different Machine learning methods
AU - Kamal Abdelbasset, Walid
AU - Alrawaili, Saud M.
AU - Elsayed, Shereen H.
AU - Diana, Tazeddinova
AU - Ghazali, Sami
AU - Felemban, Bassem F.
AU - Zwawi, Mohammed
AU - Algarni, Mohammed
AU - Su, Chia Hung
AU - Chinh Nguyen, Hoang
AU - Mahmoud, Omar
N1 - Publisher Copyright:
© 2022 The Author(s)
PY - 2022/7
Y1 - 2022/7
N2 - There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.
AB - There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.
KW - Bioenergy production
KW - Fatty acid methyl ester (FAME)
KW - Machine learning method
KW - Optimization and analysis
KW - Transesterification process
UR - http://www.scopus.com/inward/record.url?scp=85129554211&partnerID=8YFLogxK
U2 - 10.1016/j.arabjc.2022.103915
DO - 10.1016/j.arabjc.2022.103915
M3 - Article
AN - SCOPUS:85129554211
SN - 1878-5352
VL - 15
JO - Arabian Journal of Chemistry
JF - Arabian Journal of Chemistry
IS - 7
M1 - 103915
ER -