On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities

  • Reny George
  • , Mohamed Houas
  • , Mehran Ghaderi
  • , Shahram Rezapour
  • , S. K. Elagan

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

This paper aims to establish conditions for the existence, uniqueness and Ulam–Hyers stability of solutions for a coupled system of pantograph problem with three sequential fractional derivatives. Two results on the uniqueness and existence of solutions are proved to utilize the Leray–Schauder and Banach fixed point theorems and positive contraction-type inequalities. Also, the stability in the sense of Ulam–Hyers and Ulam–Hyers–Rassias are studied. An illustrative example with graphical and numerical simulations is also proposed.

Original languageEnglish
Article number105687
JournalResults in Physics
Volume39
DOIs
StatePublished - Aug 2022

Keywords

  • Contraction-type inequalities
  • Delay differential equations
  • Fixed point theory
  • Pantograph equation
  • Ulam–Hyers stability
  • Ulam–Hyers–Rassias stability

Fingerprint

Dive into the research topics of 'On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities'. Together they form a unique fingerprint.

Cite this