Insight into dust-ion-acoustic lump, stripe, and rogue waves via the Kadomtsev-Petviashvili model in the lunar ionosphere

  • N. A. El-Shafeay
  • , R. E. Tolba
  • , R. Sabry
  • , W. M. Moslem

Research output: Contribution to journalArticlepeer-review

Abstract

Motivated by ARTEMIS P2 observations, we investigate the nonlinear dust-ion-acoustic waves in the nightside lunar ionosphere when the Moon is immersed in Earth’s magnetosphere. The plasma is modeled as a three-component system: magnetospheric ions, Maxwellian electrons, and negatively charged lunar dust grains. Using the reductive perturbation and Hirota’s bilinear method, we derive the Kadomtsev-Petviashvili equation and obtain various nonlinear wave structures, including lumps, stripes, and rogue waves. Numerical simulations show that the rogue waves can form due to the interaction between stripe and lump solitons, facilitating energy exchange between lunar dust and magnetospheric ions. Moreover, using the Fast Fourier Transform analysis, the results show that the electric field amplitude of the dust-ion-acoustic rogue waves reaches up to 15 mV/m, with a frequency range of 0.1–3 kHz and a pulse duration of approximately 0.15 s.

Original languageEnglish
Article number908
JournalEuropean Physical Journal Plus
Volume140
Issue number9
DOIs
StatePublished - Sep 2025

Fingerprint

Dive into the research topics of 'Insight into dust-ion-acoustic lump, stripe, and rogue waves via the Kadomtsev-Petviashvili model in the lunar ionosphere'. Together they form a unique fingerprint.

Cite this