TY - JOUR
T1 - Impact of a Novel Pretreatment on Bond Strength of Universal Adhesive to Conventional and CAD/CAM Resin Composites
T2 - In Vitro Study
AU - Elkaffas, Ali A.
AU - Alshehri, Abdullah
AU - Alhalabi, Feras
AU - Bayoumi, Rania
AU - Alqahtani, Abdullah Ali
AU - Almudahi, Abdulellah
AU - Alsubaie, Abdulaziz Fahd
AU - Alharbi, Abdulaziz Fahd
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/6
Y1 - 2025/6
N2 - Novel dentin bonding pretreatment using copper sulfate (CuSO4) and dipotassium hydrogen phosphate (K2HPO4) may create a more hydrophobic environment for dentin bonding. Thus, this study aims to investigate the impact of a CuSO4 + K2HPO4 pretreatment on dentin μTBS when bonded with a universal adhesive to conventional and CAD/CAM resin composites. Eighty recently extracted human molars (n = 80) were chosen and placed in transparent acrylic blocks to expose the crowns entirely. Nano-filled resin composite and CAD/CAM resin blocks were selected. Based on the dentin pretreatment, type of resin composite, and adhesion strategy, the teeth were randomly allocated into eight equal groups (n = 10). The microtensile bond strength (μTBS) and fracture mode were determined. A three-way analysis of variance (ANOVA) was used to analyze the μTBS data, followed by Tukey’s post hoc test. The μTBS values were not significantly affected by either the resin composite type (p > 0.05) or the adhesive strategy (p > 0.05) according to the three-way ANOVA results. Conversely, significant differences were detected between no dentin pretreatment (24.20 ± 4.54 MPa) and CuSO4 + K2HPO4 pretreatment (33.66 ± 5.22 MPa) using an etch-and-rinse adhesive strategy for nano-filled composites (p < 0.001). Additionally, significant differences were detected between no dentin pretreatment (24.71 ± 4.33 MPa) and CuSO4 + K2HPO4 pretreatment (32.49 ± 4.92 MPa) using an etch-and-rinse adhesive strategy for CAD/CAM resin blocks (p < 0.001). Moreover, significant differences were detected between no dentin pretreatment (21.20 ± 3.40 MPa) and CuSO4 + K2HPO4 pretreatment (30.31 ± 3.87 MPa) using a self-etching adhesive strategy for nano-filled composites (p < 0.001). Also, significant differences were detected between no dentin pretreatment (23.89 ± 3.89 MPa) and CuSO4 + K2HPO4 pretreatment (31.22 ± 4.71 MPa) using a self-etching adhesive strategy for CAD/CAM resin blocks (p < 0.001). In conclusion, dentin μTBS was enhanced by a copper-based treatment when used with nano-filled and CAD/CAM resin blocks.
AB - Novel dentin bonding pretreatment using copper sulfate (CuSO4) and dipotassium hydrogen phosphate (K2HPO4) may create a more hydrophobic environment for dentin bonding. Thus, this study aims to investigate the impact of a CuSO4 + K2HPO4 pretreatment on dentin μTBS when bonded with a universal adhesive to conventional and CAD/CAM resin composites. Eighty recently extracted human molars (n = 80) were chosen and placed in transparent acrylic blocks to expose the crowns entirely. Nano-filled resin composite and CAD/CAM resin blocks were selected. Based on the dentin pretreatment, type of resin composite, and adhesion strategy, the teeth were randomly allocated into eight equal groups (n = 10). The microtensile bond strength (μTBS) and fracture mode were determined. A three-way analysis of variance (ANOVA) was used to analyze the μTBS data, followed by Tukey’s post hoc test. The μTBS values were not significantly affected by either the resin composite type (p > 0.05) or the adhesive strategy (p > 0.05) according to the three-way ANOVA results. Conversely, significant differences were detected between no dentin pretreatment (24.20 ± 4.54 MPa) and CuSO4 + K2HPO4 pretreatment (33.66 ± 5.22 MPa) using an etch-and-rinse adhesive strategy for nano-filled composites (p < 0.001). Additionally, significant differences were detected between no dentin pretreatment (24.71 ± 4.33 MPa) and CuSO4 + K2HPO4 pretreatment (32.49 ± 4.92 MPa) using an etch-and-rinse adhesive strategy for CAD/CAM resin blocks (p < 0.001). Moreover, significant differences were detected between no dentin pretreatment (21.20 ± 3.40 MPa) and CuSO4 + K2HPO4 pretreatment (30.31 ± 3.87 MPa) using a self-etching adhesive strategy for nano-filled composites (p < 0.001). Also, significant differences were detected between no dentin pretreatment (23.89 ± 3.89 MPa) and CuSO4 + K2HPO4 pretreatment (31.22 ± 4.71 MPa) using a self-etching adhesive strategy for CAD/CAM resin blocks (p < 0.001). In conclusion, dentin μTBS was enhanced by a copper-based treatment when used with nano-filled and CAD/CAM resin blocks.
KW - CAD/CAM resin blocks
KW - copper sulfate
KW - dipotassium hydrogen phosphate
KW - universal adhesives
UR - https://www.scopus.com/pages/publications/105009108387
U2 - 10.3390/jfb16060197
DO - 10.3390/jfb16060197
M3 - Article
AN - SCOPUS:105009108387
SN - 2079-4983
VL - 16
JO - Journal of Functional Biomaterials
JF - Journal of Functional Biomaterials
IS - 6
M1 - 197
ER -