Hopf bifurcation and stability analysis for a delayed prey-predator model subject to a strong Allee effect in the prey species

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This study considers the linear stability of a prey-predator model including time delays under a strong Allee effect among prey species. We drive and analyze the corresponding characteristic transcendental equation, demonstrating the presence of Hopf bifurcation at the positive equilibrium point. We applied normal form approach and center manifold theorem to determine the Hopf bifurcation direction and the stability of the bifurcating periodic solution. A numerical example was ultimately introduced to demonstrate the effectiveness of the theoretical analysis.
Original languageEnglish
Article number101199
Pages (from-to)1-7
Number of pages7
JournalPartial Differential Equations in Applied Mathematics
Volume14
Issue numberJune (2025)
StatePublished - 14 Apr 2025

Keywords

  • Hopf bifurcation
  • Prey-predator
  • Time delay
  • Strong allee effect
  • Stability analysis

Fingerprint

Dive into the research topics of 'Hopf bifurcation and stability analysis for a delayed prey-predator model subject to a strong Allee effect in the prey species'. Together they form a unique fingerprint.

Cite this