TY - JOUR
T1 - Genetic Algorithm and Particle Swarm Optimization Based Cascade Interval Type 2 Fuzzy PD Controller for Rotary Inverted Pendulum System
AU - Hamza, Mukhtar Fatihu
AU - Yap, Hwa Jen
AU - Choudhury, Imtiaz Ahmed
N1 - Publisher Copyright:
© 2015 Mukhtar Fatihu Hamza et al.
PY - 2015
Y1 - 2015
N2 - This paper presents the design of an optimized Interval Type 2 Fuzzy Proportional Derivative Controller (IT2F-PDC) in cascade form for Rotary Inverted Pendulum (RIP) system. The parameters of the IT2F-PDC are optimised by using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The goal is to balance the pendulum in upright unstable equilibrium position. The IT2F-PDC which is the extended version of conventional type 1 fuzzy logic controller, improves the control strategy by using the advantage of its footprint of uncertainty for the fuzzy membership function. The performance characteristics considered for the controller are steady state error, settling time, rise time, maximum overshoot, and control energy. Experimental and simulation results indicated that the effectiveness and robustness of the proposed GA- and PSO-based controllers on the RIP with respect to load disturbances, parameter variation, and noise effects have been improved over state-of-the-art method. However, the comparative results for simulation and experiment based on cascade IT2F-PDC indicate that GA-based IT2F-PDC has lower steady state error while PSO-based IT2F-PDC has lower overshoot, settling time, and control energy, but both have almost the same rise time. The proposed control strategy can be regarded as a promising strategy for controlling different unstable and nonlinear systems.
AB - This paper presents the design of an optimized Interval Type 2 Fuzzy Proportional Derivative Controller (IT2F-PDC) in cascade form for Rotary Inverted Pendulum (RIP) system. The parameters of the IT2F-PDC are optimised by using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The goal is to balance the pendulum in upright unstable equilibrium position. The IT2F-PDC which is the extended version of conventional type 1 fuzzy logic controller, improves the control strategy by using the advantage of its footprint of uncertainty for the fuzzy membership function. The performance characteristics considered for the controller are steady state error, settling time, rise time, maximum overshoot, and control energy. Experimental and simulation results indicated that the effectiveness and robustness of the proposed GA- and PSO-based controllers on the RIP with respect to load disturbances, parameter variation, and noise effects have been improved over state-of-the-art method. However, the comparative results for simulation and experiment based on cascade IT2F-PDC indicate that GA-based IT2F-PDC has lower steady state error while PSO-based IT2F-PDC has lower overshoot, settling time, and control energy, but both have almost the same rise time. The proposed control strategy can be regarded as a promising strategy for controlling different unstable and nonlinear systems.
UR - http://www.scopus.com/inward/record.url?scp=84934325341&partnerID=8YFLogxK
U2 - 10.1155/2015/695965
DO - 10.1155/2015/695965
M3 - Article
AN - SCOPUS:84934325341
SN - 1024-123X
VL - 2015
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 695965
ER -