Abstract
This study addresses the challenge of enhancing the spherical solar still (SPSS) performance by introducing a modified cords wick spherical solar still (CWSPSS) design. This design incorporates an additional absorber inside the SPSS with 25 wick cords attached to the upper absorber. The research also investigates the impact of installing square barriers at the base of the CWSPSS, both with and without mirrors. Furthermore, the impact of using a fan with an exterior condenser and nanoparticle-enhanced Phase Change Materials (PCM) was tested. The findings indicated that the production of the CWSPSS with baffles and reflectors increased by 165 % and 205 %, respectively. Additionally, the productivity of the CWSPSS with PCM and fan was enhanced by 243 % and 259 %, respectively. The highest efficiency achieved was 67.5 % for the CWSPSS with a fan. Ultimately, the findings demonstrate a significant 50 % reduction in production costs, positioning this innovative design as a promising solution for cost-effective freshwater production where there is plenty of sea water.
Original language | English |
---|---|
Article number | 113060 |
Journal | Solar Energy |
Volume | 284 |
DOIs | |
State | Published - Dec 2024 |
Keywords
- Ag nanoparticles
- Mirrors
- PCM
- Spherical solar still
- Wick cords