TY - JOUR
T1 - Enhanced photocatalytic activity of ficus elastica mediated zinc oxide-zirconium dioxide nanocatalyst at elevated calcination temperature
T2 - Physicochemical study
AU - Haq, Sirajul
AU - Afsar, Humma
AU - Din, Israf Ud
AU - Fazale Ahmad, Pervaiz
AU - Khandaker, Mayeen Uddin
AU - Osman, Hamid
AU - Alamri, Sultan
AU - Shahzad, Muhammad Imran
AU - Shahzad, Nadia
AU - Rehman, Wajid
AU - Waseem, Muhammad
N1 - Publisher Copyright:
© 2021 by the author. Licensee MDPI, Basel, Switzerland.
PY - 2021/12
Y1 - 2021/12
N2 - The photocatalytic degradation of Rhodamine 6G dye was achieved using a Ficus elastica (F. elastic) leaf extract mediated zinc oxide-zirconium dioxide nanocatalyst (ZnO-ZrO2 NC) under stimulated solar light, resulting in a substantial increase in photocatalytic activity at the highest calcination temperature. The crystal phase and crystallite size were determined using an X-ray dif-fractometer (XRD), and the degree of crystallinity was observed to rise with increasing calcination temperature. Energy dispersive X-ray (EDX) was used to investigate the elemental composition and purity of ZnO-ZrO2 NC. Scanning electron microscopy (SEM) was used to investigate the surface morphology, and the morphological characteristics were altered when the calcination temperature was varied. For the ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C, the average grain size determined from SEM images is 79.56 nm, 98.78 (2) nm, 54.86 (2) nm, and 67.43 (2) nm, respectively. Using diffuse reflectance spectroscopy (DRS) data, the optical band gap energy was calculated using a Tauc’s plot. The ZnO in ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C had band gap energies of 3.31, 3.36, 3.38, and 3.29 eV. Similarly, ZrO2 in ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C had band gap energies of 3.96, 3.99, 3.97, and 4.01 eV, respectively. Fourier transform infrared (FTIR) spectroscopy was used to identify the presence of various functional groups. The photocatalytic activity was also examined in relation to calcination temperature, pH, starting concentration, and catalyst dosage. Enhanced photocatalytic activity was observed at pH 11 and 15 ppm initial concentration with a catalyst dose of 25 mg. The photocatalytic activity of the sample calcined at 900 °C was the highest, with 98.94 percent of the dye mineralized in 330 min at a degradation rate of 0.01261/min.
AB - The photocatalytic degradation of Rhodamine 6G dye was achieved using a Ficus elastica (F. elastic) leaf extract mediated zinc oxide-zirconium dioxide nanocatalyst (ZnO-ZrO2 NC) under stimulated solar light, resulting in a substantial increase in photocatalytic activity at the highest calcination temperature. The crystal phase and crystallite size were determined using an X-ray dif-fractometer (XRD), and the degree of crystallinity was observed to rise with increasing calcination temperature. Energy dispersive X-ray (EDX) was used to investigate the elemental composition and purity of ZnO-ZrO2 NC. Scanning electron microscopy (SEM) was used to investigate the surface morphology, and the morphological characteristics were altered when the calcination temperature was varied. For the ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C, the average grain size determined from SEM images is 79.56 nm, 98.78 (2) nm, 54.86 (2) nm, and 67.43 (2) nm, respectively. Using diffuse reflectance spectroscopy (DRS) data, the optical band gap energy was calculated using a Tauc’s plot. The ZnO in ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C had band gap energies of 3.31, 3.36, 3.38, and 3.29 eV. Similarly, ZrO2 in ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C had band gap energies of 3.96, 3.99, 3.97, and 4.01 eV, respectively. Fourier transform infrared (FTIR) spectroscopy was used to identify the presence of various functional groups. The photocatalytic activity was also examined in relation to calcination temperature, pH, starting concentration, and catalyst dosage. Enhanced photocatalytic activity was observed at pH 11 and 15 ppm initial concentration with a catalyst dose of 25 mg. The photocatalytic activity of the sample calcined at 900 °C was the highest, with 98.94 percent of the dye mineralized in 330 min at a degradation rate of 0.01261/min.
KW - Calcination
KW - Green synthesis
KW - Photocatalysis
KW - Rhodamine 6G
KW - Zinc oxide-zirconium dioxide
UR - http://www.scopus.com/inward/record.url?scp=85120605043&partnerID=8YFLogxK
U2 - 10.3390/catal11121481
DO - 10.3390/catal11121481
M3 - Article
AN - SCOPUS:85120605043
SN - 2073-4344
VL - 11
JO - Catalysts
JF - Catalysts
IS - 12
M1 - 1481
ER -