Energy Aware Multiarmed Bandit for Millimeter Wave-Based UAV Mounted RIS Networks

Ehab Mahmoud Mohamed, Sherief Hashima, Kohei Hatano

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Reconfigurable intelligent surface (RIS) and unmanned aerial vehicle (UAV) are anticipated as talented technologies to extend the range of millimeter wave (mmWave) communications. In this letter, a UAV equipped with RIS (UAV-RIS) is used to assist mmWave base station (BS) in covering users in hotspot areas. In this context, UAV should cover several high-capacity hotspots while minimizing its flying/hovering energy consumptions. Energy-aware multi-armed bandit (EA-MAB) algorithm is proposed as an effective online learning tool to handle this problem efficiently. By which, the UAV acts as the player trying to maximize its achievable rate, i.e., the reward, over selecting different hotspots in its trajectory, i.e., the arms of the bandit game. This is done while minimizing the energy/cost of the UAV flight from one hotspot to another over the time span of its battery life. Numerical analysis confirms the superior performance of the proposed EA-MAB algorithm over benchmarks.

Original languageEnglish
Pages (from-to)1293-1297
Number of pages5
JournalIEEE Wireless Communications Letters
Volume11
Issue number6
DOIs
StatePublished - 1 Jun 2022

Keywords

  • Millimeter wave
  • multi-armed bandit
  • reconfigurable intelligent surface
  • unmanned aerial vehicles

Fingerprint

Dive into the research topics of 'Energy Aware Multiarmed Bandit for Millimeter Wave-Based UAV Mounted RIS Networks'. Together they form a unique fingerprint.

Cite this