Digital-Twin-Assisted Healthcare Framework for Adult

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Medical professionals have devised novel solutions to transform the healthcare industry. Modern technology of digital twins (DTs) can revolutionize medical treatment significantly. The DT technology incorporates digitizing physical entities by constantly monitoring their current status. Conspicuously, a state-of-the-art secure framework for monitoring adults' physical activity is formulated using the culmination of the DT technology with Internet of Things (IoT)-edge computing, and blockchain technology. The presented framework is designed to discreetly secure the health data of the individual. To identify healthcare vulnerabilities in adults, the present study employs deep learning's ability to analyze IoT data sequentially. Specifically, a deep learning-assisted multilayered convolutional neural networks (CNNs) and long short-term memory (LSTM) technique is proposed for real-time vulnerability assessment. Additionally, the proposed framework can protect personal healthcare data by using the blockchain technique. For performance validation, numerous simulations were performed over the challenging data set. Based on the results, the proposed methodology can outperform state-of-the-art techniques by registering enhanced values of Temporal Delay Efficacy (120.79 s), Prediction Efficacy (Accuracy (92.24%), Specificity (94.67%), Sensitivity (95.26%), and F-measure (95.69%)), Reliability (91.58%), and Stability (64%).

Original languageEnglish
Pages (from-to)14963-14970
Number of pages8
JournalIEEE Internet of Things Journal
Volume11
Issue number8
DOIs
StatePublished - 15 Apr 2024

Keywords

  • Adult healthcare
  • blockchain
  • digital twin (DT)

Fingerprint

Dive into the research topics of 'Digital-Twin-Assisted Healthcare Framework for Adult'. Together they form a unique fingerprint.

Cite this