TY - JOUR
T1 - Development of Nanocrystal Compressed Minitablets for Chronotherapeutic Drug Delivery
AU - Sreeharsha, Nagaraja
AU - Naveen, Nimbagal Raghavendra
AU - Anitha, Posina
AU - Goudanavar, Prakash S.
AU - Ramkanth, Sundarapandian
AU - Fattepur, Santosh
AU - Telsang, Mallikarjun
AU - Habeebuddin, Mohammed
AU - Answer, Md Khalid
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3
Y1 - 2022/3
N2 - The present work aimed to develop a chronotherapeutic system of valsartan (VS) using nanocrystal formulation to improve dissolution. VS nanocrystals (VS-NC) were fabricated using modified anti-solvent precipitation by employing a Box–Behnken design to optimize various process variables. Based on the desirability approach, a formulation containing 2.5% poloxamer, a freezing temperature of −25 °C, and 24 h of freeze-drying time can fulfill the optimized formula-tion’s requirements to result in a particle size of 219.68 nm, 0.201 polydispersity index, and zeta potential of −38.26 mV. Optimized VS-NC formulation was compressed (VNM) and coated subse-quently with ethyl cellulose and HPMC E 5. At the same time, fast dissolving tablets of VS were designed, and the best formulation was loaded with VNM into a capsule size 1 (average fill weight—400–500 mg, lock length—19.30 mm, external diameter: Cap—6.91 mm; Body—6.63 mm). The final tab in cap (tablet-in-capsule) system was studied for in vitro dissolution profile to confirm the chronotherapeutic release of VS. As required, a bi-pulse release of VS was identified with a lag time of 5 h. The accelerated stability studies confirmed no significant changes in the dissolution profiles of the tab in cap system (f2 similarity profile: >90). To conclude, the tab in cap system was successfully developed to induce a dual pulsatile release, which will ensure bedtime dosing with release after a lag-time to match with early morning circadian spikes.
AB - The present work aimed to develop a chronotherapeutic system of valsartan (VS) using nanocrystal formulation to improve dissolution. VS nanocrystals (VS-NC) were fabricated using modified anti-solvent precipitation by employing a Box–Behnken design to optimize various process variables. Based on the desirability approach, a formulation containing 2.5% poloxamer, a freezing temperature of −25 °C, and 24 h of freeze-drying time can fulfill the optimized formula-tion’s requirements to result in a particle size of 219.68 nm, 0.201 polydispersity index, and zeta potential of −38.26 mV. Optimized VS-NC formulation was compressed (VNM) and coated subse-quently with ethyl cellulose and HPMC E 5. At the same time, fast dissolving tablets of VS were designed, and the best formulation was loaded with VNM into a capsule size 1 (average fill weight—400–500 mg, lock length—19.30 mm, external diameter: Cap—6.91 mm; Body—6.63 mm). The final tab in cap (tablet-in-capsule) system was studied for in vitro dissolution profile to confirm the chronotherapeutic release of VS. As required, a bi-pulse release of VS was identified with a lag time of 5 h. The accelerated stability studies confirmed no significant changes in the dissolution profiles of the tab in cap system (f2 similarity profile: >90). To conclude, the tab in cap system was successfully developed to induce a dual pulsatile release, which will ensure bedtime dosing with release after a lag-time to match with early morning circadian spikes.
KW - Box–Behnken
KW - Chronotherapeutic system
KW - Design of experiments
KW - Nanocrystals
KW - Valsartan
UR - https://www.scopus.com/pages/publications/85126622143
U2 - 10.3390/ph15030311
DO - 10.3390/ph15030311
M3 - Article
AN - SCOPUS:85126622143
SN - 1424-8247
VL - 15
JO - Pharmaceuticals
JF - Pharmaceuticals
IS - 3
M1 - 311
ER -