TY - JOUR
T1 - Design, synthesis and anticancer evaluation of novel arylhydrazones of active methylene compounds
AU - Murugesan, Akshaya
AU - Konda Mani, Saravanan
AU - Koochakkhani, Shabnaz
AU - Subramanian, Kumar
AU - Kandhavelu, Jayalakshmi
AU - Thiyagarajan, Ramesh
AU - Gurbanov, Atash V.
AU - Mahmudov, Kamran T.
AU - Kandhavelu, Meenakshisundaram
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2024/1
Y1 - 2024/1
N2 - Nerve growth factor (NGF) and its receptor, tropomyosin kinase receptor kinase type A (TrkA) is emerging as an important target for Glioblastoma (GBM) treatment. TrkA is the cancer biomarker majorly involved in tumor invasion and migration into nearby normal tissue. However, currently, available Trk inhibitors exhibit many adverse effects in cancer patients, thus demanding a novel class of ligands to regulate Trk signaling. Here, we exploited the role of TrkA (NTRK1) expression from the 651 datasets of brain tumors. RNA sequence analysis identified overexpression of NTRK1 in GBM, recurrent GBM as well in Oligoastrocytoma patients. Also, TrkA expression tends to increase over the higher grades of GBM. TrkA protein targeting hydrazone derivatives, R48, R142, and R234, were designed and their mode of interaction was studied using molecular docking and dynamic simulation studies. Ligands' stability and binding assessment reveals R48, 2 2-(2-(2-hydroxy-4-nitrophenyl) hydrazineylidene)-1-phenylbutane-1,3-dione, as a potent ligand that interacts well with TrkA's hydrophobic residues, Ile, Phe, Leu, Ala, and Val. R48- TrkA exhibits stable binding potentials with an average RMSD value <0.8 nm. R48 obeyed Lipinski's rule of five and possessed the best oral bioavailability, suggesting R48 as a potential compound with drug-likeness properties. In-vitro analysis also revealed that R48 exhibited a higher cytotoxicity effect for U87 GBM cells than TMZ with the IC50 value of 68.99 μM. It showed the lowest percentage of cytotoxicity to the non-cancerous TrkA expressing MEF cells. However, further SiRNA analysis validates the non-specific binding of R48, necessitating structural alteration for the development of R48-based TrkA inhibitor for GBM therapeutics.
AB - Nerve growth factor (NGF) and its receptor, tropomyosin kinase receptor kinase type A (TrkA) is emerging as an important target for Glioblastoma (GBM) treatment. TrkA is the cancer biomarker majorly involved in tumor invasion and migration into nearby normal tissue. However, currently, available Trk inhibitors exhibit many adverse effects in cancer patients, thus demanding a novel class of ligands to regulate Trk signaling. Here, we exploited the role of TrkA (NTRK1) expression from the 651 datasets of brain tumors. RNA sequence analysis identified overexpression of NTRK1 in GBM, recurrent GBM as well in Oligoastrocytoma patients. Also, TrkA expression tends to increase over the higher grades of GBM. TrkA protein targeting hydrazone derivatives, R48, R142, and R234, were designed and their mode of interaction was studied using molecular docking and dynamic simulation studies. Ligands' stability and binding assessment reveals R48, 2 2-(2-(2-hydroxy-4-nitrophenyl) hydrazineylidene)-1-phenylbutane-1,3-dione, as a potent ligand that interacts well with TrkA's hydrophobic residues, Ile, Phe, Leu, Ala, and Val. R48- TrkA exhibits stable binding potentials with an average RMSD value <0.8 nm. R48 obeyed Lipinski's rule of five and possessed the best oral bioavailability, suggesting R48 as a potential compound with drug-likeness properties. In-vitro analysis also revealed that R48 exhibited a higher cytotoxicity effect for U87 GBM cells than TMZ with the IC50 value of 68.99 μM. It showed the lowest percentage of cytotoxicity to the non-cancerous TrkA expressing MEF cells. However, further SiRNA analysis validates the non-specific binding of R48, necessitating structural alteration for the development of R48-based TrkA inhibitor for GBM therapeutics.
KW - Glioblastoma
KW - Hydrazone derivatives
KW - Molecular docking
KW - TrkA inhibitor
UR - http://www.scopus.com/inward/record.url?scp=85177860072&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.127909
DO - 10.1016/j.ijbiomac.2023.127909
M3 - Article
C2 - 37951450
AN - SCOPUS:85177860072
SN - 0141-8130
VL - 254
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 127909
ER -