Deep Transfer Learning Enabled Intelligent Object Detection for Crowd Density Analysis on Video Surveillance Systems

  • Fadwa Alrowais
  • , Saud S. Alotaibi
  • , Fahd N. Al-Wesabi
  • , Noha Negm
  • , Rana Alabdan
  • , Radwa Marzouk
  • , Amal S. Mehanna
  • , Mesfer Al Duhayyim

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Object detection is a computer vision based technique which is used to detect instances of semantic objects of a particular class in digital images and videos. Crowd density analysis is one of the commonly utilized applications of object detection. Since crowd density classification techniques face challenges like non-uniform density, occlusion, inter-scene, and intra-scene deviations, convolutional neural network (CNN) models are useful. This paper presents a Metaheuristics with Deep Transfer Learning Enabled Intelligent Crowd Density Detection and Classification (MDTL-ICDDC) model for video surveillance systems. The proposed MDTL-ICDDC technique mostly con-centrates on the effective identification and classification of crowd density on video surveillance systems. In order to achieve this, the MDTL-ICDDC model primarily leverages a Salp Swarm Algorithm (SSA) with NASNetLarge model as a feature extraction in which the hyperparameter tuning process is performed by the SSA. Furthermore, a weighted extreme learning machine (WELM) method was utilized for crowd density and classification process. Finally, the krill swarm algorithm (KSA) is applied for an effective parameter optimization process and thereby improves the classification results. The experimental validation of the MDTL-ICDDC approach was carried out with a benchmark dataset, and the outcomes are examined under several aspects. The experimental values indicated that the MDTL-ICDDC system has accomplished enhanced performance over other models such as Gabor, BoW-SRP, Bow-LBP, GLCM-SVM, GoogleNet, and VGGNet.

Original languageEnglish
Article number6665
JournalApplied Sciences (Switzerland)
Volume12
Issue number13
DOIs
StatePublished - 1 Jul 2022

Keywords

  • computer vision
  • crowd density estimation
  • deep learning
  • object detection
  • object tracking
  • parameter optimization
  • video surveillance

Fingerprint

Dive into the research topics of 'Deep Transfer Learning Enabled Intelligent Object Detection for Crowd Density Analysis on Video Surveillance Systems'. Together they form a unique fingerprint.

Cite this