Corrigendum to “A prediction model for the performance of solar photovoltaic-thermoelectric systems utilizing various semiconductors via optimal surrogate machine learning methods” [Eng. Sci. Technol. 40 (2023) 101363] (Engineering Science and Technology, an International Journal (2023) 40, (S221509862300040X), (10.1016/j.jestch.2023.101363))

Hisham Alghamdi, Chika Maduabuchi, Abdullah Albaker, Ibrahim Alatawi, Turki Alsuwian, Theyab R. Alsenani, Ahmed S. Alsafran, Mohammed AlAqil, Mostafa A.H. Abdelmohimen, Mohammed Alkhedher

Research output: Contribution to journalComment/debate

Abstract

The authors acknowledge the Deanship of Scientific Research at King Faisal University for funding this work under the Research Collaboration Funding program Grant Number 3128.

Original languageEnglish
Article number101414
JournalEngineering Science and Technology, an International Journal
Volume42
DOIs
StatePublished - Jun 2023

Fingerprint

Dive into the research topics of 'Corrigendum to “A prediction model for the performance of solar photovoltaic-thermoelectric systems utilizing various semiconductors via optimal surrogate machine learning methods” [Eng. Sci. Technol. 40 (2023) 101363] (Engineering Science and Technology, an International Journal (2023) 40, (S221509862300040X), (10.1016/j.jestch.2023.101363))'. Together they form a unique fingerprint.

Cite this