Brain Tumor MRI Classification Using a Novel Deep Residual and Regional CNN

  • Mirza Mumtaz Zahoor
  • , Saddam Hussain Khan
  • , Tahani Jaser Alahmadi
  • , Tariq Alsahfi
  • , Alanoud S.Al Mazroa
  • , Hesham A. Sakr
  • , Saeed Alqahtani
  • , Abdullah Albanyan
  • , Bader Khalid Alshemaimri

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Brain tumor classification is essential for clinical diagnosis and treatment planning. Deep learning models have shown great promise in this task, but they are often challenged by the complex and diverse nature of brain tumors. To address this challenge, we propose a novel deep residual and region-based convolutional neural network (CNN) architecture, called Res-BRNet, for brain tumor classification using magnetic resonance imaging (MRI) scans. Res-BRNet employs a systematic combination of regional and boundary-based operations within modified spatial and residual blocks. The spatial blocks extract homogeneity, heterogeneity, and boundary-related features of brain tumors, while the residual blocks significantly capture local and global texture variations. We evaluated the performance of Res-BRNet on a challenging dataset collected from Kaggle repositories, Br35H, and figshare, containing various tumor categories, including meningioma, glioma, pituitary, and healthy images. Res-BRNet outperformed standard CNN models, achieving excellent accuracy (98.22%), sensitivity (0.9811), F1-score (0.9841), and precision (0.9822). Our results suggest that Res-BRNet is a promising tool for brain tumor classification, with the potential to improve the accuracy and efficiency of clinical diagnosis and treatment planning.

Original languageEnglish
Article number1395
JournalBiomedicines
Volume12
Issue number7
DOIs
StatePublished - Jul 2024

Keywords

  • brain tumor classification
  • convolutional neural networks
  • deep learning
  • magnetic resonance imaging

Fingerprint

Dive into the research topics of 'Brain Tumor MRI Classification Using a Novel Deep Residual and Regional CNN'. Together they form a unique fingerprint.

Cite this