TY - JOUR
T1 - Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection
T2 - a comparative evaluation
AU - Vaiyapuri, Thavavel
AU - Binbusayyis, Adel
N1 - Publisher Copyright:
© 2020 Vaiyapuri and Binbusayyis
PY - 2020/12
Y1 - 2020/12
N2 - The ever-increasing use of internet has opened a new avenue for cybercriminals, alarming the online businesses and organization to stay ahead of evolving thread landscape. To this end, intrusion detection system (IDS) is deemed as a promising defensive mechanism to ensure network security. Recently, deep learning has gained ground in the field of intrusion detection but majority of progress has been witnessed on supervised learning which requires adequate labeled data for training. In real practice, labeling the high volume of network traffic is laborious and error prone. Intuitively, unsupervised deep learning approaches has received gaining momentum. Specifically, the advances in deep learning has endowed autoencoder (AE) with greater ability for data reconstruction to learn the robust feature representation from massive amount of data. Notwithstanding, there is no study that evaluates the potential of different AE variants as one-class classifier for intrusion detection. This study fills this gap of knowledge presenting a comparative evaluation of different AE variants for one-class unsupervised intrusion detection. For this research, the evaluation includes five different variants of AE such as Stacked AE, Sparse AE, Denoising AE, Contractive AE and Convolutional AE. Further, the study intents to conduct a fair comparison establishing a unified network configuration and training scheme for all variants over the common benchmark datasets, NSL-KDD and UNSW-NB15. The comparative evaluation study provides a valuable insight on how different AE variants can be used as one-class classifier to build an effective unsupervised IDS. The outcome of this study will be of great interest to the network security community as it provides a promising path for building effective IDS based on deep learning approaches alleviating the need for adequate and diverse intrusion network traffic behavior.
AB - The ever-increasing use of internet has opened a new avenue for cybercriminals, alarming the online businesses and organization to stay ahead of evolving thread landscape. To this end, intrusion detection system (IDS) is deemed as a promising defensive mechanism to ensure network security. Recently, deep learning has gained ground in the field of intrusion detection but majority of progress has been witnessed on supervised learning which requires adequate labeled data for training. In real practice, labeling the high volume of network traffic is laborious and error prone. Intuitively, unsupervised deep learning approaches has received gaining momentum. Specifically, the advances in deep learning has endowed autoencoder (AE) with greater ability for data reconstruction to learn the robust feature representation from massive amount of data. Notwithstanding, there is no study that evaluates the potential of different AE variants as one-class classifier for intrusion detection. This study fills this gap of knowledge presenting a comparative evaluation of different AE variants for one-class unsupervised intrusion detection. For this research, the evaluation includes five different variants of AE such as Stacked AE, Sparse AE, Denoising AE, Contractive AE and Convolutional AE. Further, the study intents to conduct a fair comparison establishing a unified network configuration and training scheme for all variants over the common benchmark datasets, NSL-KDD and UNSW-NB15. The comparative evaluation study provides a valuable insight on how different AE variants can be used as one-class classifier to build an effective unsupervised IDS. The outcome of this study will be of great interest to the network security community as it provides a promising path for building effective IDS based on deep learning approaches alleviating the need for adequate and diverse intrusion network traffic behavior.
KW - Deep autoencoders
KW - Deep learning algorithms
KW - Network intrusion detection
KW - One-class classifier
KW - Unsupervised deep learning
UR - http://www.scopus.com/inward/record.url?scp=85098572065&partnerID=8YFLogxK
U2 - 10.7717/peerj-cs.327
DO - 10.7717/peerj-cs.327
M3 - Article
AN - SCOPUS:85098572065
SN - 2376-5992
VL - 6
SP - 1
EP - 26
JO - PeerJ Computer Science
JF - PeerJ Computer Science
ER -